Computational Intelligence

Winter Term 2022/23

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Evolutionary Algorithms (EA)
- Optimization Basics
- EA Basics

Optimization Basics

Lecture 05

modelling

simulation

optimization

system

output

Optimization Basics

given:
objective function $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$
feasible region X (= nonempty set)
objective: find solution with minimal or maximal value!

optimization problem:

find $x^{*} \in X$ such that $f\left(x^{*}\right)=\min \{f(x): x \in X\}$
x^{*} global solution
$f\left(x^{*}\right)$ global optimum
note:
$\max \{f(x): x \in X\}=-\min \{-f(x): x \in X\}$

Optimization Basics

Lecture 05

local solution $x^{*} \in X$:
$\forall x \in N\left(x^{*}\right): f\left(x^{*}\right) \leq f(x)$ \downarrow
neighborhood of $x^{*}=$ bounded subset of X
if x^{*} local solution then
$f\left(x^{*}\right)$ local optimum / minimum
example: $X=\mathbb{R}^{n}, N_{\varepsilon}\left(x^{*}\right)=\left\{x \in X:\left\|x-x^{*}\right\|_{2} \leq \varepsilon\right\} \quad(\varepsilon>0)$

remark:

evidently, every global solution / optimum is also local solution / optimum; the reverse is wrong in general!
example:
$\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$, global solution at x^{*}

Optimization Basics

What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (e.g. ill-shaped feasible region)
- non-smoothness / ruggedness (weak causality) \longrightarrow strong causality needed!
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)
$\rightarrow f(x)=a_{1} x_{1}+\ldots+a_{n} x_{n} \rightarrow \max !$ with $x_{i} \in\{0,1\}, a_{i} \in \mathbb{R}$ add constaint $g(x)=b_{1} x_{1}+\ldots+b_{n} x_{n} \leq b$
add capacity constraint to TSP \Rightarrow CVRP
$\Rightarrow x_{i}^{*}=1$ iff $a_{i}>0$
\Rightarrow NP-hard
\Rightarrow still harder

Optimization Basics

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required
\Rightarrow don't apply EAs
randomized search heuristics
- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient
\Rightarrow EAs worth a try

Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration
\Rightarrow interpretation of biological evolution as iterative method of improvement
feasible solution $x \in X=S_{1} \times \ldots \times S_{n} \quad=$ chromosome of individual
multiset of feasible solutions
objective function $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$
= population: multiset of individuals
= fitness function
often: $X=\mathbb{R}^{n}, X=\mathbb{B}^{n}=\{0,1\}^{n}, X=\mathbb{P}_{n}=\{\pi: \pi$ is permutation of $\{1,2, \ldots, n\}\}$
also : combinations like $X=\mathbb{R}^{n} \times \mathbb{B}^{p} \times \mathbb{P}_{q}$ or non-cartesian sets
\Rightarrow structure of feasible region / search space defines representation of individual

Evolutionary Algorithm Basics

algorithmic skeleton

```
initialize population
    \downarrow
    evaluation
        \downarrow
    parent selection
    \downarrow
    variation (yields offspring)
    \downarrow
    evaluation (of offspring)
    \downarrow
    survival selection (yields new population)
    \downarrow
    stop?
    \downarrow
    output: best individual found
```


Evolutionary Algorithm Basics

Specific example: (1+1)-EA in \mathbb{B}^{n} for minimizing some $f: \mathbb{B}^{n} \rightarrow \mathbb{R}$
population size $=1$, number of offspring $=1$, selects best from $1+1$ individuals

1. initialize $X^{(0)} \in \mathbb{B}^{n}$ uniformly at random, set $t=0$
2. evaluate $f\left(X^{(t)}\right)$
3. select parent: $Y=X^{(t)}$
no choice, here
4. variation: flip each bit of Y independently with probability $p_{m}=1 / n$
5. evaluate $f(Y)$
6. selection: if $f(Y) \leq f\left(X^{(t)}\right)$ then $X^{(t+1)}=Y$ else $X^{(t+1)}=X^{(t)}$
7. if not stopping then $t=t+1$, continue at (3)

Evolutionary Algorithm Basics

Specific example: (1+1)-EA in \mathbb{R}^{n} for minimizing some $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$
population size $=1$, number of offspring $=1$, selects best from $1+1$ individuals

1. initialize $X^{(0)} \in C \subset \mathbb{R}^{n}$ uniformly at random, set $t=0$
2. evaluate $f\left(X^{(t)}\right)$
3. select parent: $Y=X^{(t)}$
no choice, here
4. variation $=$ add random vector: $Y=Y+Z$, e.g. $Z \sim N\left(0, I_{n}\right)$
5. evaluate $f(Y)$
6. selection: if $f(Y) \leq f\left(X^{(t)}\right)$ then $X^{(t+1)}=Y$ else $X^{(t+1)}=X^{(t)}$
7. if not stopping then $t=t+1$, continue at (3)

Evolutionary Algorithm Basics

Selection
(a) select parents that generate offspring
(b) select individuals that proceed to next generation \rightarrow selection for survival

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals
typically : selection only based on fitness values $f(x)$ of individuals
seldom : additionally based on individuals chromosomes $\mathrm{x}(\rightarrow$ maintain diversity)

Evolutionary Algorithm Basics

Selection methods
population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ individuals
two approaches:

1. repeatedly select individuals from population with replacement
2. rank individuals somehow and choose those with best ranks (no replacement)

- uniform / neutral selection choose index i with probability $1 / \mu$
- fitness-proportional selection choose index i with probability $\mathrm{s}_{\mathrm{i}}=\frac{f\left(x_{i}\right)}{\sum_{x \in P} f(x)}$
problems: $f(x)>0$ for all $x \in X$ required $\quad \Rightarrow g(x)=\exp (f(x))>0$
but already sensitive to additive shifts $g(x)=f(x)+c$
almost deterministic if large differences, almost uniform if small differences

Evolutionary Algorithm Basics

Selection methods
population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ individuals

- rank-proportional selection order individuals according to their fitness values assign ranks
fitness-proportional selection based on ranks
\Rightarrow avoids all problems of fitness-proportional selection
 but: best individual has only small selection advantage (can be lost!)

- k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)
\Rightarrow has all advantages of rank-based selection and probability that best individual does not survive:

$$
\begin{aligned}
&\left(1-\frac{1}{\mu}\right)^{k \mu}<e^{-k} \\
& \geq 4^{-k}
\end{aligned}
$$

Evolutionary Algorithm Basics

Selection methods without replacement
population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ parents and
population $\mathrm{Q}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\lambda}\right)$ with λ offspring

- (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks
\Rightarrow best individual may get lost, $\lambda \geq \mu$ required
- $(\mu+\lambda)$-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
\Rightarrow best individual survives for sure

Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring, best survives with probability 1
- Forced elitism: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

method	P\{ select best $\}$	from parents \& offspring	intrinsic elitism
neutral	<1	no	no
fitness proportionate	<1	no	no
rank proportionate	<1	no	no
k-ary tournament	<1	no	no
$(\mu+\lambda)$	$=1$	yes	yes
(μ, λ)	$=1$	no	no

Evolutionary Algorithm Basics

Variation operators: depend on representation
$\left[\begin{array}{ll}\text { mutation } & \rightarrow \text { alters a single individual } \\ \text { recombination } & \rightarrow \text { creates single offspring from two or more parents }\end{array}\right.$
may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

Evolutionary Algorithm Basics

Variation in \mathbb{B}^{n}

- Mutation
a) local
b) global
c) "nonlocal"
d) inversion
\rightarrow choose index $\mathrm{k} \in\{1, \ldots, \mathrm{n}\}$ uniformly at random, flip bit k, i.e., $x_{k}=1-x_{k}$
\rightarrow for each index $\mathrm{k} \in\{1, \ldots, \mathrm{n}\}$: flip bit k with probability $\mathrm{p}_{\mathrm{m}} \in(0,1)$
\rightarrow choose K indices at random and flip bits with these indices
\rightarrow choose start index k_{s} and end index k_{e} at random invert order of bits between start and end index

1	1	0	\rightarrow	0		1
0	$\mathrm{k}=2$	1	0	$\mathrm{~K}=2$	0	k_{s}
0	1					
1		1	0		0	
1	a)	1	b)	1	c)	1

Evolutionary Algorithm Basics

Variation in \mathbb{B}^{n}

- Recombination (two parents)
a) 1-point crossover
b) K-point crossover
c) uniform crossover
\rightarrow draw cut-point $k \in\{1, \ldots, n-1\}$ uniformly at random; choose first k bits from 1st parent, choose last $n-k$ bits from 2nd parent
\rightarrow draw K distinct cut-points uniformly at random; choose bits 1 to k_{1} from 1st parent, choose bits $\mathrm{k}_{1}+1$ to k_{2} from 2 nd parent, choose bits $\mathrm{k}_{2}+1$ to k_{3} from 1st parent, and so forth ...
\rightarrow for each index i: choose bit i with equal probability from 1st or 2nd parent
\(\left.\left.$$
\begin{array}{ll} & 1 \\
\hline & 0 \\
\hline 0 & 1 \\
0 & 1 \\
\text { a) } & 1\end{array}
$$\right] \begin{array}{l}1

1\end{array}\right]\)| 1 |
| :--- |
| 1 |
| 1 |

Evolutionary Algorithm Basics

Variation in \mathbb{B}^{n}

- Recombination (multiparent: $\rho=$ \#parents)
a) diagonal crossover ($2<\rho<n$)
\rightarrow choose $\rho-1$ distinct cut points, select chunks from diagonals

can generate ρ offspring; otherwise choose initial chunk at random for single offspring
b) gene pool crossover ($\rho>2$)
\rightarrow for each gene: choose donating parent uniformly at random

Evolutionary Algorithm Basics

Variation in \mathbb{P}_{n}
Individuals $\in \mathrm{X}=\pi(1, \ldots, \mathrm{n})$

- Mutation
a) loca
\rightarrow 2-swap / 1-translocation

b) global
\rightarrow draw number K of 2-swaps, apply 2-swaps K times

K is positive random variable; its distribution may be uniform, binomial, geometrical, ...; $\mathrm{E}[\mathrm{K}]$ and $\mathrm{V}[\mathrm{K}]$ may control mutation strength
expectation
variance

Evolutionary Algorithm Basics

Lecture 05

Variation in \mathbb{P}_{n}

```
Individuals }\in\textrm{X}=\pi(1,\ldots,n
```

- Recombination (two parents)
a) order-based crossover (OBX)
- select two indices k_{1} and k_{2} with $k_{1} \leq k_{2}$ uniformly at random
- copy genes k_{1} to k_{2} from $1^{\text {st }}$ parent to offspring (keep positions)
- copy genes from left (pos. 1) to right (pos. n) of $2^{\text {nd }}$ parent, insert after pos. k_{2} in offspring (skip values already contained)

2	3	5	7	1	6	4
6	4	5	3	7	2	1
\mathbf{x}	\mathbf{x}	\mathbf{x}	7	1	6	\mathbf{x}
5	3	2	7	1	6	4

b) partially mapped crossover (PMX) [a version of]

- select two indices k_{1} and k_{2} with $k_{1} \leq k_{2}$ uniformly at random
- copy genes k_{1} to k_{2} from $1^{\text {st }}$ parent to offspring (keep positions)
- copy all genes not already contained in offspring from $2^{\text {nd }}$ parent (keep positions)
- from left to right: fill in remaining genes from $2^{\text {nd }}$ parent

Evolutionary Algorithm Basics

Variation in \mathbb{P}_{n}

$$
\text { Individuals } \in \mathrm{X}=\pi(1, \ldots, \mathrm{n})
$$

- Recombination (two parents)
c) partially mapped crossover (PMX) [Grefenstette et al. 1985]
\rightarrow consider array as ring!
- given: 2 permutations a and b of length n
- select 2 indices k_{1} and k_{2} uniformly at random
- copy b to c
- procedure =

```
i = kl
```

repeat

```
```

repeat

```
```

 j = findIndex(a[i], c)
    ```
    j = findIndex(a[i], c)
    swap(c[i], c[j])
    swap(c[i], c[j])
    i = (i + 1) mod n
    i = (i + 1) mod n
until i == k2
```

until i == k2

```
\begin{tabular}{lll|lll|l}
2 & 3 & 5 & 7 & 1 & 6 & 4 \\
6 & 4 & 5 & 3 & 7 & 2 & 1
\end{tabular}
6453721
\begin{tabular}{llllll|ll}
6 & 4 & 5 & 7 & 3 & 2 & 1
\end{tabular}
\(\begin{array}{lllllll}6 & 4 & 5 & 7 & 1 & 2 & 3\end{array}\)
2457163

\section*{Evolutionary Algorithm Basics}

\section*{Variation in \(\mathbb{R}^{n}\)}
- Mutation
additive:

\(\rightarrow Z\) with bounded support
\[
f_{Z}(x)=\frac{4}{3}\left(1-x^{2}\right) \cdot 1_{[-1,1]}(x)
\]

Let \(f_{z}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}\)be p.d.f. of r.v. \(Z\). The set \(\left\{x \in \mathbb{R}^{n}: f_{z}(x)>0\right\}\) is termed the support of \(Z\).
b) nonlocal \(\quad \rightarrow \mathrm{Z}\) with unbounded support

most frequently used!

\section*{Evolutionary Algorithm Basics}

\section*{Variation in \(\mathbb{R}^{n}\)}
- Recombination (two parents)
a) all crossover variants adapted from \(\mathbb{B}^{n}\)
b) intermediate
\[
z=\xi \cdot x+(1-\xi) \cdot y \text { with } \xi \in[0,1]
\]
c) intermediate (per dimension)
\(\forall i: z_{i}=\xi_{i} \cdot x_{i}+\left(1-\xi_{i}\right) \cdot y_{i}\) with \(\xi_{i} \in[0,1]\)
d) discrete \(\forall i: z_{i}=B_{i} \cdot x_{i}+\left(1-B_{i}\right) \cdot y_{i}\) with \(B_{i} \sim B\left(1, \frac{1}{2}\right)\)
e) simulated binary crossover (SBX)
\(\rightarrow\) for each dimension with probability \(p_{c}\)


\section*{Evolutionary Algorithm Basics}

Variation in \(\mathbb{R}^{n}\)
Individuals \(X \in \mathbb{R}^{n}\)
- Recombination (multiparent), \(\rho \geq 3\) parents
a) intermediate \(z=\sum_{k=1}^{\rho} \xi^{(k)} x_{i}^{(k)}\) where \(\sum_{k=1}^{\rho} \xi^{(k)}=1\) and \(\xi^{(k)} \geq 0\)
(all points in convex hull)
b) intermediate (per dimension) \(\forall i: z_{i}=\sum_{k=1}^{\rho} \xi_{i}^{(k)} x_{i}^{(k)}\)
\[
\forall i: z_{i} \in\left[\min _{k}\left\{x_{i}^{(k)}\right\}, \max _{k}\left\{x_{i}^{(k)}\right\}\right]
\]

\section*{Evolutionary Algorithm Basics}

\section*{Lecture 05}

\section*{Theorem}

Let \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\) be a strictly quasiconvex function. If \(f(x)=f(y)\) for some \(x \neq y\) then every offspring generated by intermediate recombination is better than its parents.

\section*{Proof:}
\(f\) strictly quasiconvex \(\Rightarrow f(\xi \cdot x+(1-\xi) \cdot y)<\max \{f(x), f(y)\}\) for \(0<\xi<1\)
since \(f(x)=f(y) \quad \Rightarrow \max \{f(x), f(y)\}=\min \{f(x), f(y)\}\)
\[
\Rightarrow f(\xi \cdot x+(1-\xi) \cdot y)<\min \{f(x), f(y)\} \text { for } 0<\xi<1
\]

\section*{Evolutionary Algorithm Basics}

\section*{Theorem}

Let \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\) be a differentiable function and \(f(x)<f(y)\) for some \(x \neq y\). If \((y-x)^{d} \nabla f(x)<0\) then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

\section*{Proof:}

If \(d^{\prime} \nabla f(x)<0\) then \(d \in \mathbb{R}^{n}\) is a direction of descent, i.e.
\[
\exists \tilde{s}>0: \forall s \in(0, \tilde{s}]: f(x+s \cdot d)<f(x) .
\]

Here: \(d=y-x\) such that \(\mathrm{P}\{f(\xi x+(1-\xi) y)<f(x)\} \geq \frac{\tilde{s}}{\|d\|}>0\).

sublevel set \(S_{\alpha}=\left\{x \in \mathbb{R}^{n}: f(x)<\alpha\right\}\)```

