

Computational Intelligence

Winter Term 2022/23

Prof. Dr. Günter Rudolph

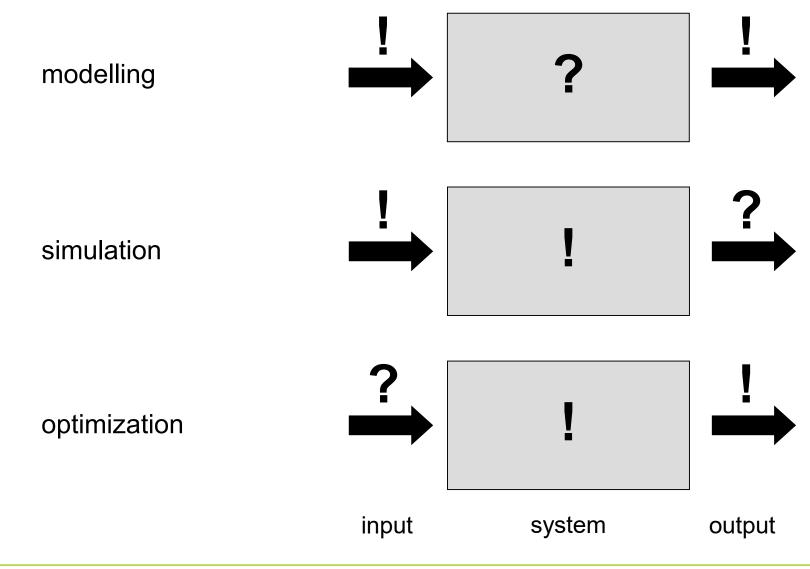
Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Evolutionary Algorithms (EA)
 - Optimization Basics
 - EA Basics

Optimization Basics



G. Rudolph: Computational Intelligence • Winter Term 2022/23

given:

objective function $f\colon X\to \mathbb{R}$

```
feasible region X (= nonempty set)
```

objective: find solution with minimal or maximal value!

optimization problem:

find $x^* \in X$ such that $f(x^*) = \min\{ f(x) : x \in X \}$

x* global solutionf(x*) global optimum

note:

$$max\{ f(x) : x \in X \} = -min\{ -f(x) : x \in X \}$$

local solution $x^* \in X$:if x^* local solution $\forall x \in N(x^*)$: $f(x^*) \leq f(x)$ $f(x^*)$ local \downarrow \downarrow neighborhood of $x^* =$ example: $X = \mathbb{R}^n, N_{\varepsilon}(x^*) =$

$$\underline{\text{example:}} \quad X = \mathbb{R}^n, \ \mathsf{N}_{\varepsilon}(\mathsf{x}^*) = \{ \mathsf{x} \in \mathsf{X}: || \mathsf{x} - \mathsf{x}^* ||_2 \leq \varepsilon \} \quad (\varepsilon > 0)$$

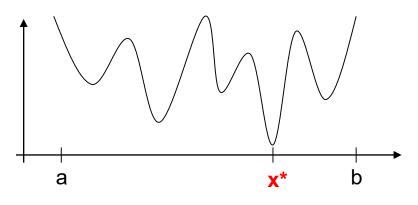
remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

example:

f: [a,b] $\rightarrow \, \mathbb{R}$, global solution at \textbf{x}^{\star}



What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (e.g. ill-shaped feasible region)
- non-smoothness / ruggedness (weak causality) ------ strong causality needed!
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)

→ $f(x) = a_1 x_1 + ... + a_n x_n \rightarrow max!$ with $x_i \in \{0,1\}$, $a_i \in \mathbb{R}$ $\Rightarrow x_i^* = 1$ iff $a_i > 0$ add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$ \Rightarrow NP-hard

add capacity constraint to TSP \Rightarrow CVRP

 \Rightarrow still harder

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required

⇒ don't apply EAs

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient

\Rightarrow EAs worth a try

idea: using biological evolution as metaphor and as pool of inspiration

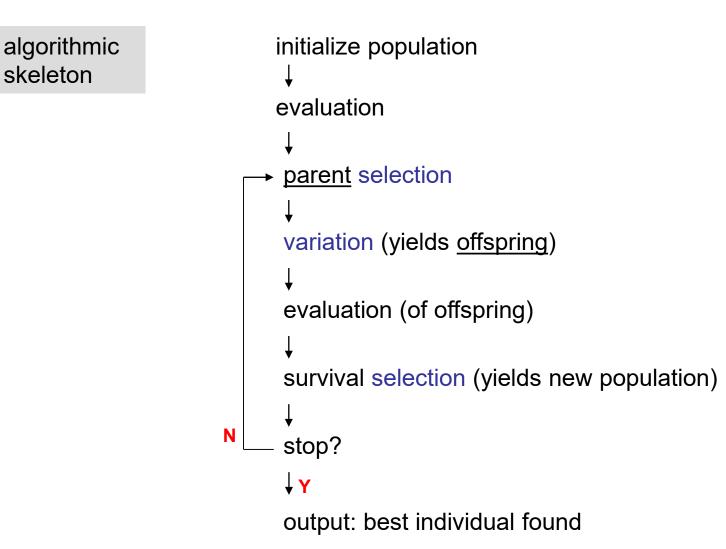
 \Rightarrow interpretation of biological evolution as iterative method of improvement

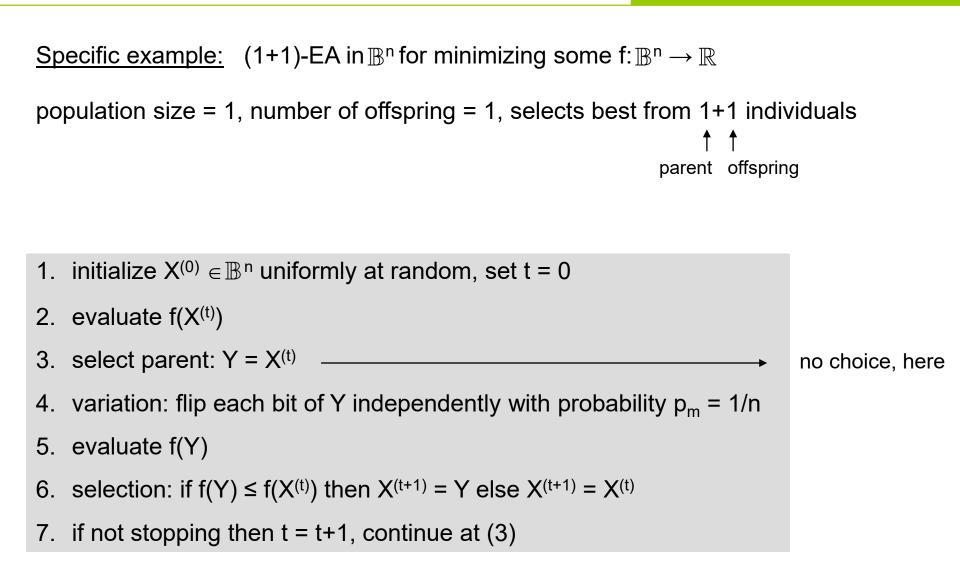
feasible solution $x \in X = S_1 x \dots x S_n$ = chromosome of individualmultiset of feasible solutions= population: multiset of individualsobjective function $f: X \to \mathbb{R}$ = fitness function

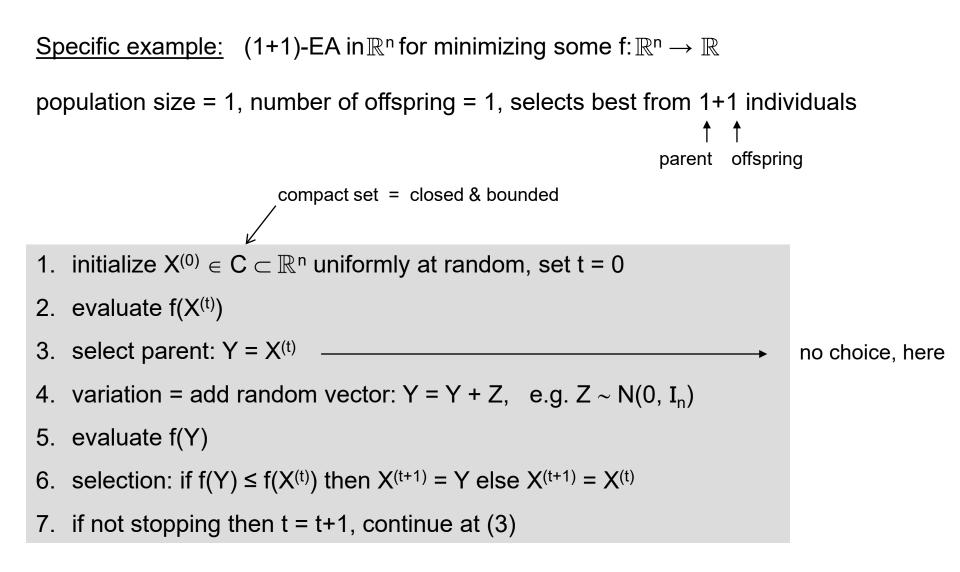
often: X = \mathbb{R}^n , X = \mathbb{B}^n = {0,1}ⁿ, X = \mathbb{P}_n = { π : π is permutation of {1,2,...,n} }

<u>also</u>: combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual







Selection

(a) select parents that generate offspring

(b) select individuals that proceed to next generation \rightarrow selection for **survival**

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals' chromosomes x (\rightarrow maintain diversity)

 \rightarrow selection for **reproduction**

Selection methods

population P = $(x_1, x_2, ..., x_{\mu})$ with μ individuals

two approaches:

- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- *uniform / neutral selection* choose index i with probability $1/\mu$

• fitness-proportional selection choose index i with probability $s_i = \frac{f(x_i)}{\sum\limits_{x \in P} f(x)}$ problems: f(x) > 0 for all $x \in X$ required $\Rightarrow g(x) = \exp(f(x)) > 0$ but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

Selection methods

population P = $(x_1, x_2, ..., x_{\mu})$ with μ individuals

rank-proportional selection

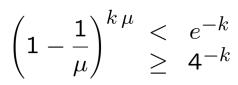
order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks

 \Rightarrow avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and probability that best individual does not survive: $\left(1 - \frac{1}{\mu}\right)^{k\mu} \leq e^{-k} \geq 4^{-k}$



Selection methods without replacement

population P = $(x_1, x_2, ..., x_{\mu})$ with μ parents and population Q = $(y_1, y_2, ..., y_{\lambda})$ with λ offspring

 (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks

 \Rightarrow best individual may get lost, $\lambda \ge \mu$ required

- (μ+λ)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
- \Rightarrow best individual survives for sure

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- *Intrinsic elitism*: method selects from parent and offspring, best survives with probability 1
- *Forced elitism*: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

method	P{ select best }	from parents & offspring	intrinsic elitism
neutral	< 1	no	no
fitness proportionate	< 1	no	no
rank proportionate	< 1	no	no
k-ary tournament	< 1	no	no
(μ + λ)	= 1	yes	yes
(μ,λ)	= 1	no	no

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Variation operators: depend on representation

- mutation \rightarrow alters a <u>single</u> individual

recombination \rightarrow creates single offspring from two or more parents

may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

Variation in \mathbb{B}^n

Individuals $\in \{ \ 0, \ 1 \ \}^n$

- Mutation
 - a) local \rightarrow choose index k \in { 1, ..., n } uniformly at random, flip bit k, i.e., x_k = 1 x_k
 - b) global \rightarrow for each index $k \in \{1, ..., n\}$: flip bit k with probability $p_m \in (0,1)$
 - c) "nonlocal" \rightarrow choose K indices at random and flip bits with these indices
 - d) inversion \rightarrow choose start index k_s and end index k_e at random invert order of bits between start and end index

1 1 0 k=2 k_s 1 0 0 1 0 K=2 0 1 0 0 0 1 k_e 1 0 0 0 1 1 1 1 1 b) a) C) d)

technische universität dortmund

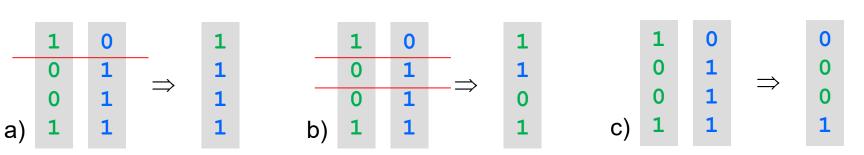
G. Rudolph: Computational Intelligence - Winter Term 2022/23

Variation in \mathbb{B}^n

Individuals $\in \{ 0, 1 \}^n$

Lecture 05

- Recombination (two parents)
 - a) 1-point crossover → draw cut-point k ∈ {1,...,n-1} uniformly at random; choose first k bits from 1st parent, choose last n-k bits from 2nd parent
 - b) K-point crossover \rightarrow draw K distinct cut-points uniformly at random; choose bits 1 to k₁ from 1st parent, choose bits k₁+1 to k₂ from 2nd parent, choose bits k₂+1 to k₃ from 1st parent, and so forth ...
 - c) uniform crossover \rightarrow for each index i: choose bit i with equal probability from 1st or 2nd parent



U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23 19

Variation in \mathbb{B}^n

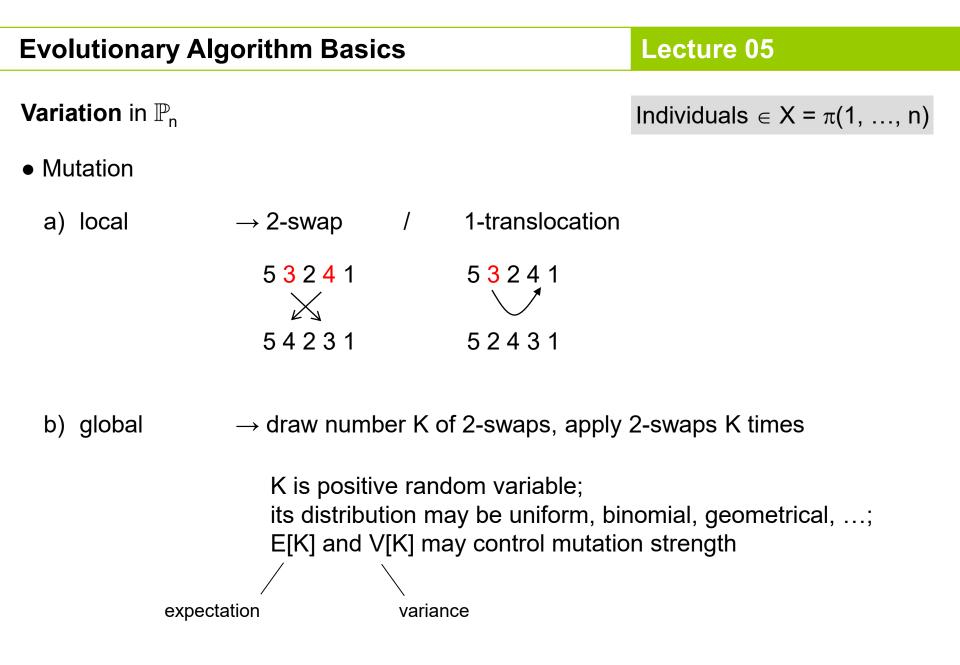
Individuals $\in \{0, 1\}^n$

- Recombination (multiparent: ρ = #parents)
 - a) diagonal crossover (2 < ρ < n)
 - \rightarrow choose ρ 1 distinct cut points, select chunks from diagonals

AAAAAAAAAA BBBBBBBBBBB CCCCCCCCCC DDDDDDDDD ABBBCCDDDD BCCCDDAAAA CDDDAABBBB DAAABBCCCC

can generate ρ offspring; otherwise choose initial chunk at random for single offspring

- b) gene pool crossover ($\rho > 2$)
 - \rightarrow for each gene: choose donating parent uniformly at random



U technische universität dortmund

Variation in \mathbb{P}_n

- Recombination (two parents)
 - a) order-based crossover (OBX)

Evolutionary Algorithm Basics

- select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random
- copy genes k_1 to k_2 from 1st parent to offspring (keep positions)
- copy genes from left (pos. 1) to right (pos. n) of 2nd parent, insert after pos. k₂ in offspring (skip values already contained)

- b) partially mapped crossover (PMX) [a version of]
 - select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random
 - copy genes k_1 to k_2 from 1st parent to offspring (keep positions)
 - copy all genes not already contained in offspring from 2nd parent (keep positions)
 - from left to right: fill in remaining genes from 2nd parent

2 6	3 4	5 5	7 3	1 7	6 2	4 1
x	x	x	7	1	6	x
5	2	2	7	1	6	Λ

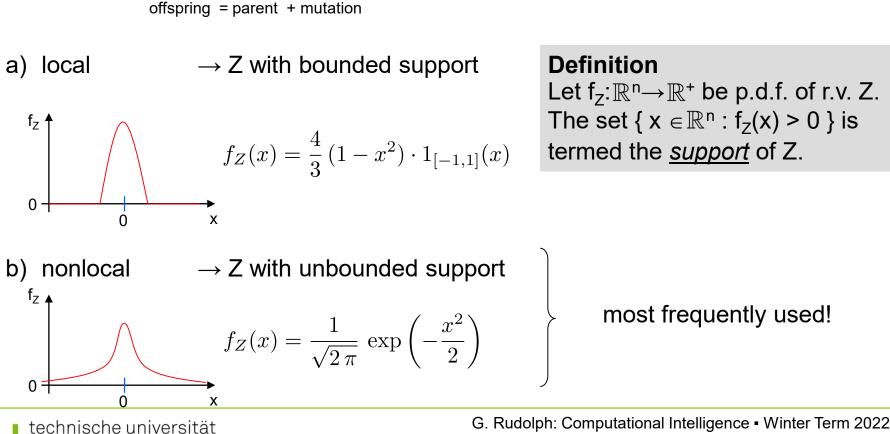
2 6	3 4	5 5	7 3	1 7	6 2	4 1
x	x	x	7	1	6	x
x	4	5	7	1	6	x
3	4	5	7	1	6	2

Individuals $\in X = \pi(1, ..., n)$

Evolutionary Algorithm Basics	Lecture 0	5					
Variation in \mathbb{P}_n	Individuals e	≡ X	= 7	τ(1	,	., r	า)
 Recombination (two parents) 							
c) partially mapped crossover (PMX) [Grefenstette et al. 1985] \rightarrow consider array as ring!	2 6	3 4	5 5	7 3	1 7	6 2	4 1
- given: 2 permutations а and ъ of length n	6	4	5	3	7	2	1
 select 2 indices k₁ and k₂ uniformly at random сору ь to с 	6	4	5	7	3	2	1
- procedure =	6	4	5	7	1	2	3
i = k1 repeat	2	4	5	7	1	6	3
<pre>j = findIndex(a[i], c) swap(c[i], c[j]) i = (i + 1) mod n until i == k2</pre>							

G. Rudolph: Computational Intelligence • Winter Term 2022/23 24

(Z: n-dimensional random vector)



Mutation

additive:

dortmund

Variation in \mathbb{R}^n

Y = X + Z

≠ ♦

Individuals $X \in \mathbb{R}^n$

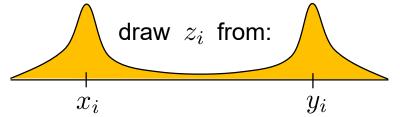
G. Rudolph: Computational Intelligence • Winter Term 2022/23

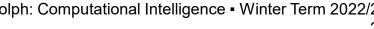
25

Evolutionary Algorithm Basics

Variation in \mathbb{R}^n

- Recombination (two parents)
 - a) all crossover variants adapted from \mathbb{B}^n
 - $z = \xi \cdot x + (1 \xi) \cdot y$ with $\xi \in [0, 1]$ b) intermediate
 - c) intermediate (per dimension) $\forall i: z_i = \xi_i \cdot x_i + (1 \xi_i) \cdot y_i$ with $\xi_i \in [0, 1]$
 - $\forall i: z_i = B_i \cdot x_i + (1 B_i) \cdot y_i$ with $B_i \sim B(1, \frac{1}{2})$ d) discrete
 - e) simulated binary crossover (SBX)
 - \rightarrow for each dimension with probability p_c





Lecture 05

Variation in \mathbb{R}^n

Individuals $X \in \mathbb{R}^n$

Lecture 05

• Recombination (multiparent), $\rho \ge 3$ parents

a) intermediate
$$z = \sum_{k=1}^{\rho} \xi^{(k)} x_i^{(k)}$$
 where $\sum_{k=1}^{\rho} \xi^{(k)} = 1$ and $\xi^{(k)} \ge 0$

(all points in convex hull)

b) intermediate (per dimension) $\forall i : z_i = \sum_{k=1}^{\rho} \xi_i^{(k)} x_i^{(k)}$ $\forall i : z_i \in \left[\min_k \{x_i^{(k)}\}, \max_k \{x_i^{(k)}\}\right]$

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If f(x) = f(y) for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

f strictly quasiconvex $\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \max\{f(x), f(y)\}$ for $0 < \xi < 1$

since $f(x) = f(y) \implies \max\{f(x), f(y)\} = \min\{f(x), f(y)\}$

 $\Rightarrow \ f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{\ f(x), f(y) \ \} \text{ for } 0 < \xi < 1$

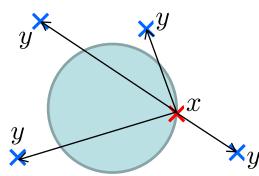
Theorem

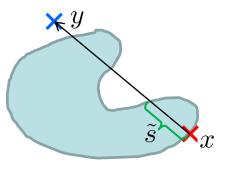
Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and f(x) < f(y) for some $x \neq y$. If (y - x), $\nabla f(x) < 0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

Proof:

If $d' \nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e. $\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$

Here: d = y - x such that $P\{f(\xi x + (1 - \xi) y) < f(x)\} \ge \frac{\tilde{s}}{\|d\|} > 0.$





sublevel set $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$

U technische universität dortmund