technische universität	Plan for Today Lecture 06
Computational Intelligence Winter Term 2022/23	 Design of Evolutionary Algorithms Design Guidelines Genotype-Phenotype Mapping Maximum Entropy Distributions
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund	G. Rudolph: Computational Intelligence • Winter Term 2022/23
	dortmund 2
Design of Evolutionary Algorithms Lecture 06	Design of Evolutionary Algorithms Lecture 06
 <u>Three tasks:</u> 1. Choice of an appropriate problem representation. 2. Choice / design of variation operators acting in problem representation. 3. Choice of strategy parameters (includes initialization). 	ad 1a) genotype-phenotype mapping original problem f: $X \rightarrow \mathbb{R}^d$ scenario: no standard algorithm for search space X available
ad 1) different "schools": (a) operate on binary representation and define genotype/phenotype mapping + can use standard algorithm – mapping may induce unintentional bias in search	$ \begin{array}{c} f \\ g \\ \end{array} \end{array} \xrightarrow{f} \mathbb{R}^{d} $
 (b) no doctrine: use "most natural" representation – must design variation operators for specific representation + if design done properly then no bias in search 	 standard EA performs variation on binary strings b ∈ Bⁿ fitness evaluation of individual b via (f ∘ g)(b) = f(g(b)) where g: Bⁿ → X is genotype-phenotype mapping selection operation independent from representation
technische universität G. Rudolph: Computational Intelligence • Winter Term 2022/23 dortmund 3	technische universität G. Rudolph: Computational Intelligence • Winter Term 2022/23 4

1 [

Design of Evolutionary Algorithms	Lecture 06	Design of Evolutionary Algorithms Lecture 06	
Genotype-Phenotype-Mapping $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$ • Standard encoding for $b \in \mathbb{B}^n$ $x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2$ \rightarrow Problem: hamming cliffs	i	Genotype-Phenotype-Mapping $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$ • Gray encoding for $b \in \mathbb{B}^n$ Let $a \in \mathbb{B}^n$ standard encoded. Then $b_i = \begin{cases} a_i, & \text{if } i = 1 \\ a_{i,1} \oplus a_i, & \text{if } i > 1 \end{cases}$ $\oplus = XOR$ $\boxed{\begin{array}{c} 000 001 011 010 110 111 101 100 \\ 0 1 2 3 4 5 6 7 \end{array}}$ \oplus genotype \leftarrow phenotype	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
Design of Evolutionary Algorithms	Lecture 06	Design of Evolutionary Algorithms Lecture 06	
 Genotype-Phenotype-Mapping Bⁿ → P^{log(n)} e.g. standard encoding for b ∈ Bⁿ individual: 	(example only)	 ad 1a) genotype-phenotype mapping typically required: strong causality → small changes in individual leads to small changes in fitness → small changes in genotype should lead to small changes in phenotype 	
	01 100 ← genotype	but: how to find a genotype-phenotype mapping with that property?	
0 1 2 3 4 5 consider index and associated genotype entry a sort units with respect to genotype value, old index	ices yield permutation:	necessary conditions: 1) g: B ⁿ → X can be computed efficiently (otherwise it is senseless) 2) g: B ⁿ → X is surjective (otherwise we might miss the optimal solution) 3) g: B ⁿ → X preserves closeness (otherwise strong causality endangered)	
000 001 010 100 101 101 1 3 5 0 7 1 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Let $d(\cdot, \cdot)$ be a metric on \mathbb{B}^n and $d_x(\cdot, \cdot)$ be a metric on X.	

= permutation

G. Rudolph: Computational Intelligence • Winter Term 2022/23 8

 $\forall x, \, y, \, z \, \in \, \mathbb{B}^n \colon d(x, \, y) \leq d(x, \, z) \, \Rightarrow d_X(g(x), \, g(y)) \leq d_X(g(x), \, g(z))$

technische universität dortmund

 ad 2) design guidelines for variation operators a) reachability every x ∈ X should be reachable from arbitrary x₀ ∈ X after finite number of repeated variations with positive probability bounded from 0 b) unbiasedness unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; known from theory: weaken variation strength when approaching optimum 	
 every x ∈ X should be reachable from arbitrary x₀ ∈ X after finite number of repeated variations with positive probability bounded from 0 b) unbiasedness unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; 	
 every x ∈ X should be reachable from arbitrary x₀ ∈ X after finite number of repeated variations with positive probability bounded from 0 b) unbiasedness unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; 	
 after finite number of repeated variations with positive probability bounded from 0 b) unbiasedness unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; 	
 unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; 	
 variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; 	
variation operator should have parameters affecting shape of distributions;	
G. Rudolph: Computational Intelligence • Winter Term 2022/2 1 Design of Evolutionary Algorithms Lecture 06	
b) unbiasedness	
don't prefer any direction or subset of points without reason	
\Rightarrow use maximum entropy distribution for sampling!	
properties:	
- distributes probability mass as uniform as possible	
 - additional knowledge can be included as constraints: → under given constraints sample as uniform as possible 	

Design of Evolutionary Algorithms

Lecture 06

Formally:

Definition:

Let X be discrete random variable (r.v.) with $p_k = P\{X = x_k\}$ for some index set K. The quantity

$$H(X) = -\sum_{k \in K} p_k \log p_k$$

is called the **entropy of the distribution** of X. If X is a continuous r.v. with p.d.f. $f_X(\cdot)$ then the entropy is given by

$$H(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$$

The distribution of a random variable X for which H(X) is maximal is termed a *maximum entropy distribution*.

Excursion: Maximum Entropy Distributions

Lecture 06

Knowledge available:

Discrete distribution with support { $x_1, x_2, ..., x_n$ } with $x_1 < x_2 < ..., x_n < \infty$

$$p_k = \mathsf{P}\{X = x_k\}$$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

G. Rudolph: Computational Intelligence • Winter Term 2022/23 14

G. Rudolph: Computational Intelligence • Winter Term 2022/23 13

Excursion: Maximum Entropy Distributions Lecture 06 $L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$

partial derivatives:

technische universität dortmund

$$\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0 \qquad \Rightarrow p_k \stackrel{!}{=} e^{a-1}$$

$$\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0 \qquad p_k = \frac{1}{n}$$

$$\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1} \stackrel{!}{=} 1 \quad \Leftrightarrow \quad e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} \frac{1}{n} e^{a-1} = \frac{1}{n}$$

Excursion: Maximum Entropy Distributions

Lecture 06

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{ X = k \}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1 \text{ and } \sum_{k=1}^{n} k p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

tortmund technische universität

Excursion: Maximum Entropy Distributions

Lecture 06

G. Rudolph: Computational Intelligence - Winter Term 2022/23

Excursion: Maximum Entropy Distributions

Lecture 06

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

partial derivatives:

technische universität dortmund

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=1}^n k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^n p_k = e^{a-1} \sum_{k=1}^n (e^b)^k \stackrel{!}{=} 1$$
(continued on next slide)

 $\Rightarrow e^{a-1} = \frac{1}{\sum\limits_{k=1}^{n} (e^b)^k} \qquad \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum\limits_{i=1}^{n} (e^b)^i}$

discrete Boltzmann distribution \Rightarrow

$$=\frac{q^k}{\sum\limits_{i=1}^n q^i} \qquad (q=e^b)$$

value of q depends on v via third condition: (\star) \Rightarrow

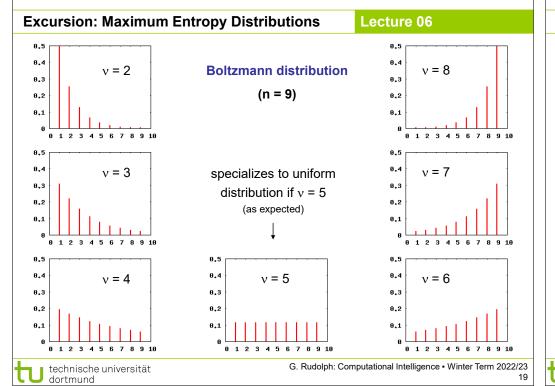
$$\sum_{k=1}^{n} k p_{k} = \frac{\sum_{k=1}^{n} k q^{k}}{\sum_{i=1}^{n} q^{i}} = \frac{1 - (n+1) q^{n} + n q^{n+1}}{(1-q) (1-q^{n})} \stackrel{!}{=} \nu$$

 p_k

17

technische universität J dortmund

G. Rudolph: Computational Intelligence - Winter Term 2022/23 18



Excursion: Maximum Entropy Distributions Lecture 06

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with E[X] = v and $V[X] = \eta^2$

 \Rightarrow leads to nonlinear constrained optimization problem:

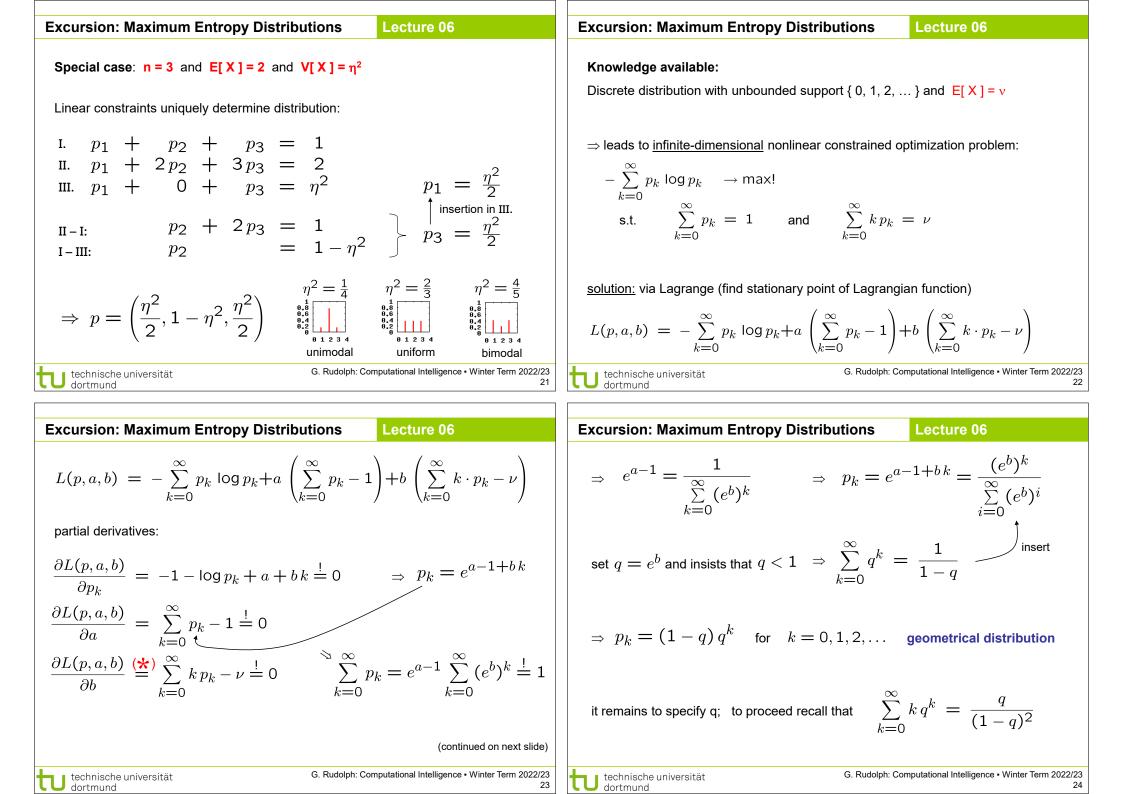
$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

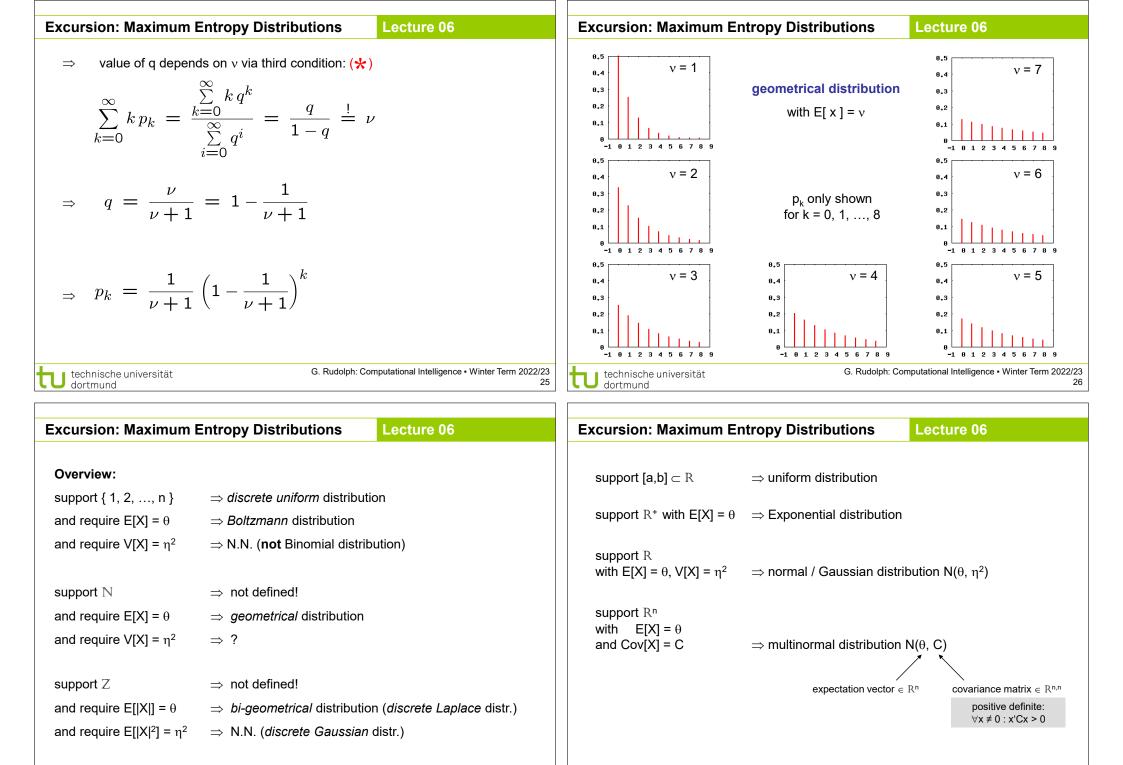
s.t.
$$\sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu \quad \text{and} \quad \sum_{k=1}^{n} (k-\nu)^2 p_k = \eta^2$$

solution: in principle, via Lagrange (find stationary point of Lagrangian function)

but very complicated analytically, if possible at all	note: constraints
\Rightarrow consider special cases only	are linear
	equations in p _k

technische universität τυ dortmund





technische universität dortmund

27

