
technische universität dortmund		Swarm Intelligence	Lecture 09	
		Contents		
		Ant algorithms	(combinatorial optimization)	
Computational Intell	igence	Particle swarm algorithms	(optimization in \mathbb{R}^n)	
Winter Term 2022/23				
Prof. Dr. Günter Rudolph				
Lehrstuhl für Algorithm Engineering (LS	S 11)			
Fakultät für Informatik				
TU Dortmund				
			G. Rudolph: Computational Intelligence • Winter Term 2022/23	
		technische universität dortmund	2	
Swarm Intelligence	Lecture 09	Swarm Intelligence: Ants	Lecture 09	
meta	aphor	ant algorithms (ACO: Ant Colony Optimization)		
		paradigm for design of metaheuristics t	for combinatorial optimization	
swarms of bird or fish	ants or termites			
seeking for food	seeking for food	stigmergy = indirect communication thr	ough modification of environment	
		» 1991 Colorni / Dorigo / Maniezzo: Ar	nt System (also: 1⁵ ECAL, Paris 1991)	
concepts:	concepts:	Dorigo (1992): collective behavor of	social insects (PhD)	
evaluation of own current situation	communication / coordination		0001550110 (5 0000)	
• comparison with other conspecific	by means of "stigmergy"	some facts: <u>https://doi.org/10.1073/p</u>	nas.2201550119 (from 2022)	
• imitation of behavior of successful	 reinforcement learning → positive feedback 	 about 2% of all insects are social about 50% of all social insects are an 	ts	
conspecifics		• total weight of all ants = 20% of weigh	nt of all humans	
\Rightarrow audio-visual communication	\Rightarrow olfactoric communication	 ants populate earth since > 100 millio <i>homo sapiens</i> populate earth since al 	ons years (as old as dinosaurs!) bout 300,000 years (earlier versions extinct)	
technische universität	G. Rudolph: Computational Intelligence • Winter Term 2022/23 3		G. Rudolph: Computational Intelligence • Winter Term 2022/23 4	

partial solutions of problems

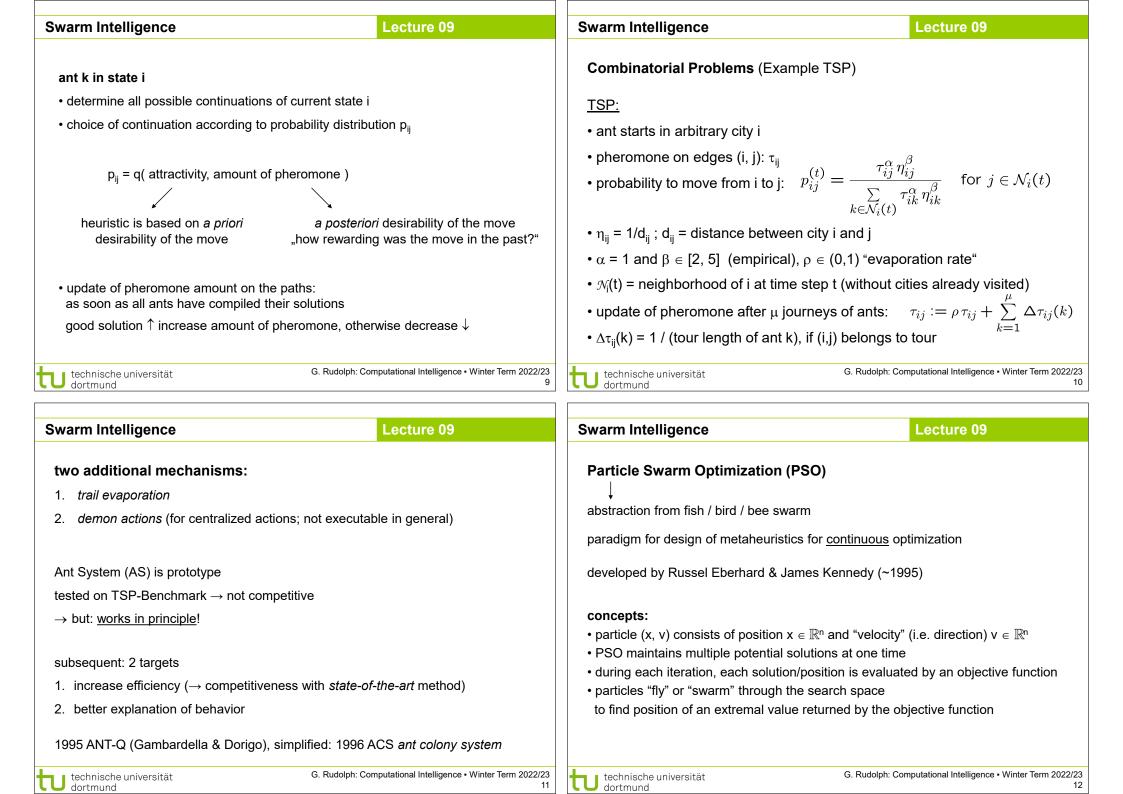
G. Rudolph: Computational Intelligence • Winter Term 2022/23

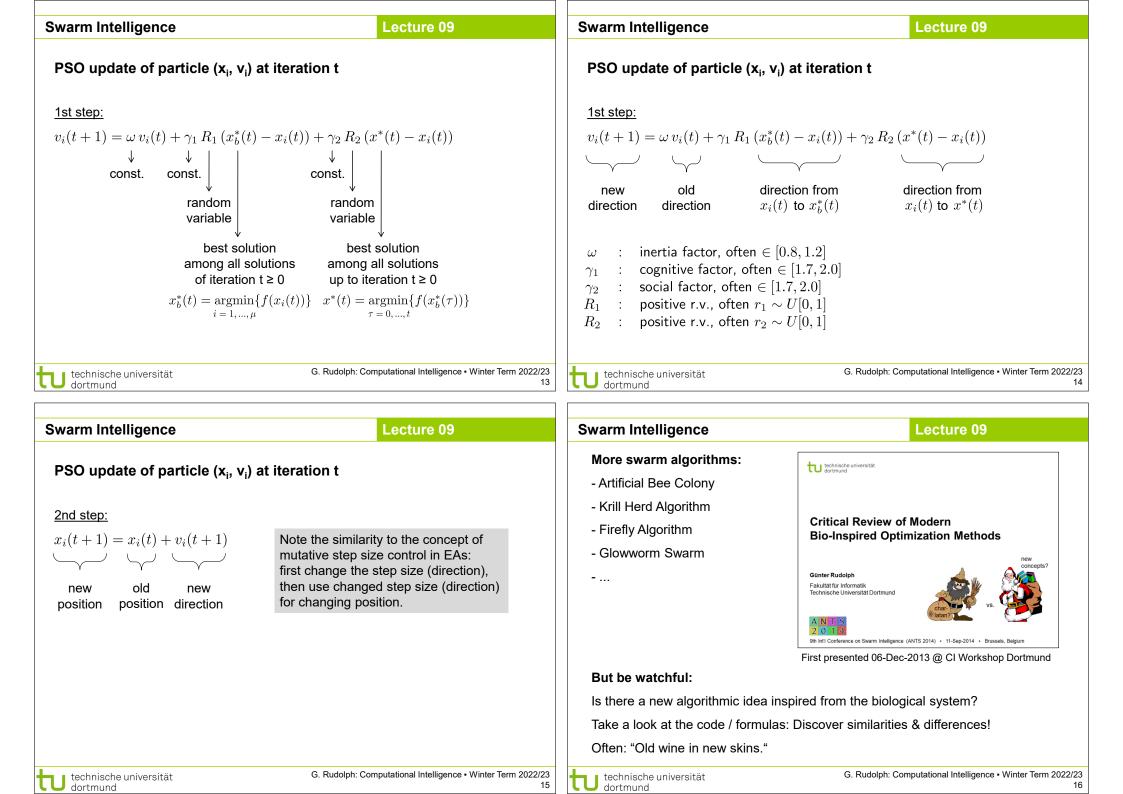
 \rightarrow caused by movement of ants the final solution is compiled incrementally

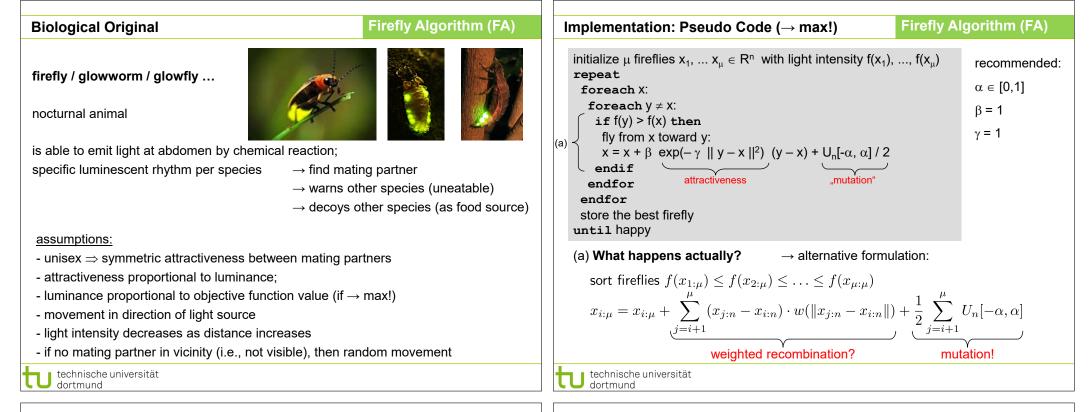
technische universität

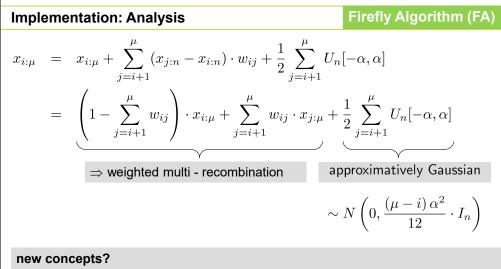
dortmund

while constructing the solution (if possible), otherwise at the end:


1. evaluation of solutions


2. modification of 'trail value' of components on the path


feedback


technische universität dortmund

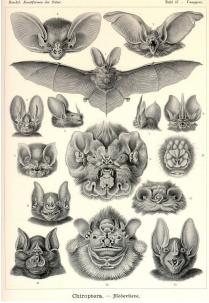
7

- generates new points by weighted recombination and mutation (= EA)
- but: weighting depends on distance between individuals (inspired by original)

no benchmark results! (defines 2 own test problems for n=2 and n=5)

U technische universität

Biological Original


bats (~ 1000 species, since 50 x 10⁶ years)

3.3 cm body14 cm body17 cm wing-span60 cm wing-span

essential distinctive feature: shape of head $\ \rightarrow$

capable of **echo location**: (not all species!) emits short ultra sonic impulses (mouth/nose), radiation focusable

if prey reflects sound) # impulses ↑ noise loudness (ultrasonic) > jackhammer frequency 25 – 150 kHz, pulse rate 10 – 20 Hz

Bat Algorithm (BA)

https://doi.org/10.11588/diglit.3064#0061

Implementation

Bat Algorithm (BA)

Bat Algorithm (BA)

assumptions:

- localization and distinction between prey and obstacle by echo localization
- flight velocity v at position x
- search frequency \in [F_{min} , F_{max}] (\rightarrow higher frequency has more energy?)
- loudness \in [A_{min} , $A \in_{max}$] decreases while approaching prey (\rightarrow why?)
- puls rate r > 0 increases while approaching prey (\rightarrow more precise localization)

description of algorithm:

- pseudo code in original paper extremly vague; verbal description unclear
- MATLAB code in monograph [Yang 2010] without loudness and puls rate
- MATLAB code in Matlab Central (July 2012) with different initialization

http://www.mathworks.com/matlabcentral/fileexchange/37582-bat-algorithm-demo

U technische universität dortmund

	•		
ex	tracted from MATLAB code		
	initialize μ bats b = (x, v, F, r, A) and determine b* with b $x_{best} = x^*$ and $f_{best} = f(x_{best})$ repeat for each bat $f_{old} = f(x)$	est fitness value	
(a)	$v = v + (x - x^*) \cdot U[F_{min}, F_{max}]$ $x = x + v$		
(b)	if U[0,1] > r then x = x* + $\sigma \cdot N(0, I_n)$ mit $\sigma 2$ [-1, 1]	
(c)	$\begin{split} & \texttt{if} \ f(x) \leq f_{old} \ \texttt{and} \ U[0,1] < \texttt{A then} \ \texttt{accept} \ \texttt{new} \ \texttt{bat} \texttt{//} \\ & \texttt{if} \ f(x) \leq f_{best} \ \texttt{then} \ x_{best} = x; \ f_{best} = f(x_{best}) \\ & \texttt{endfor} \\ & \texttt{until} \ \ f_{best} - f_{opt} \ < \epsilon \end{split}$	copies only x !	
	 (a) search frequency has no strategic meaning (= rando (b) realizes an iteration of (1+1)-EA with probability 1 – (c) an improvement (!) is accepted with prob. A , only x 	r, fixed step size!	

technische universität dortmund

Implementation: Pseudo Code

setting of experiments:GA= standard GA($\mu = 40, p_m = 0.05, p_c = 0.95$),PSO= standard PSO($\mu = 40, \alpha = \beta = 2$, inertia = 1),BA= BA with A _t ($\mu = 2550, \alpha = 0.9$),100 runs; mean #FEsStd.Dev. (success prob.) until f _{best} - f _{oot} < ϵ = 10 ⁻⁵
PSO = standard PSO ($\mu = 40, \alpha = \beta = 2$, inertia = 1), BA = BA with A _t ($\mu = 2550, \alpha = 0.9$),
, , , , , , , , , , , , , , , , , , ,
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Griewangk's 70925 ± 7652(90%) 55970 ± 4223(92%) 9792 ± 4732(100%) Shubert's (18 minima) 54077 ± 4997(89%) 23992 ± 3755(92%) 11925 ± 4049(100%) [Yang 2010, S. 73] but: results with MATLAB-Code from mathworks not reproduceable!

Cause Study

Bat Algorithm (BA)

Xin-She Yang: Nature-Inspired Metaheuristic Algorithms, Luniver Press 2008

- contains MATLAB Code (seemingly transferred to 2nd ed. 2010 without change)
- contains no performance results

X.-S. Yang: A New metaheuristic Bat-Inspired Algorithm, S. 65-74, in NISCO 2010

- contains no MATLAB code (presumably used code from 2008/2010 monograph)
- contains performance results (see previous slide)

How did results materialize?

 \rightarrow "convenient" initialization [Yang 2010, p. 102]

almost all test problems have optimal solution in origin;

all bats initialized via ${\bf x}$ = randn(1, n) \rightarrow X ~ N(0, $I_n)$

thus, all bats standard normal-distributed around global optimum!

MATLAB code from mathworks initializes "correctly" \rightarrow bad results!

technische universität dortmund

Biological Original

Cuckoo Algorithm (CA)

cuckoo (~ 130 species)

name rooted in birdcall "cuckoo" of male

characteristic feature (of only ~ 40 species): **brood parasitism**

• cuckoo places own eggs in foreign nests

- if event not noticed by host animal, cuckoo's egg will be incubated by host bird
- cuckoo hatches first (10-13 days) + kicks (all) other eggs out of nest
- mimicks call for foster mother
- grows faster than other birds

 specific properties of biological original not realized 						
• hence, no new concepts \Rightarrow PSO-like swarm variant with (ence, no new concepts \Rightarrow PSO-like swarm variant with (1+1)-steps					
 no reference code; only incomplete "demo" versions 						
 performance not reproduceable! 						
\Rightarrow should never have been published!						
XS. Yang & S. Deb: Bat algorithm for multi-objective optim Int'l J. Bio-Inspired Computation 3(5):267-274, 2011.	nisation,					
ightarrow same algorithm with scalarization via weighted sum!						
What kind of journal is it? (Impact Factor 2012: 1.351)	Be aware: journal published by Inderscience					
EiC: Zhihua Cui						
Advisory Board: XS. Yang, S. Deb, et al.	not: Interscience (Wiley)					
technische universität dortmund						

Implementation

Cuckoo Algorithm (CA)

Bat Algorithm (BA)

assumptions:

Upshot

- each cuckoo lays exactly 1 egg
- the "best" nests with "high-qualitaty" eggs will pass to next iteration
- host bird detects cuckoo's egg with prob. p (removes egg or build new nest)
- cuckoo = cuckoo's egg = nest

description of algorithm:

- pseudo code in original literature extremly vague; verbal description unclear
- MATLAB code in monograph [Yang 2010] with fixed parametrization
- deploys Gaussian instead of purported Lévy distribution
- no benchmarks! (claims verbally good results for Michalewicz test function n=2)

Pseudo Code (→ max!)	Cuckoo Algorithm (CA)	Upshoot	Cuckoo Algorithm (CA	
initialize μ nests/eggs $x_1,x_\mu\in R^n$ with egg quali	ty $f(x_1),, f(x_{\mu})$			
repeat choose a cuckoo x _i at random		brood parasitism realized in no way!		
cuckoo flies: $x = x_i + \alpha \cdot Lévy$		algorithm resembles poorly designed EA - with very weak selection pressure - with no recombination		
choose a nest x_j at random (j \neq i not required) if $f(x) > f(x_i)$ then lay egg x into nest x_i // thus:	v = v			
replace fraction p of worst nests with random nev				
store best nest / cuckoo / egg until happy		- with no step size control		
until happy		- with wasting of p · μ FEs by Gau	ussian random walk	
inspection of Matlab Code:) cannot be competitive!		
- random new nests are normally distributed aroun	d old nest x = x + 0.01 $\cdot \Delta \cdot N(0, I_n)$, camer 20 componente.		
- cuckoo flies normally distributed and not according to Lévy		Where can this be published?		
What happens? May be interpreted as follows:		- Proceedings NaBic 2009: XS. Yang & S. Deb: Cuckoo Search via Lévy Flights		
fraction of p individuals move as per random walk		- XS. Yang & S. Deb: Int. J. Math. Modelling & Num. Opt. 1:330-343, 2010.		
fraction of 1-p individuals perform ([1-p]· μ + 1)-EA	with random replacement (no reco.)			
technische universität		Editor-in-Chief: Xin-She Yang		
U dortmund		dortmund		
The Metaphor Crisis	Lecture 09	The Metaphor Crisis	Lecture 09	
There are hundreds of "animal/plant algorithms" (i	netabeuristics)			
	,	May it be hoax, ignorance, fraud, naivity of the authors		
\rightarrow see the list 'EC Bestiary' @ <u>http://fcampelo.github.io/EC-Bestiary/</u>		The CI community must fight against the metaphor glut,		
Conjecture		as these publications can be harmful t	to the reputation of CI!	
Authors took a blind pick from any encyclopedia o	f animals or plants	Journals		
to weirdly describe an algorithm that is purportedly inspired by that species.		Journal of Heuristics (2015)		
		Swarm Intelligence (2016), ACM Transactions on Evolutionary Le	arning and Optimization (2021)	
Be alerted!		have additions to their submission guidelines:		
If you see a "new" bio-inspired algorithm, ask		This journal will not publish papers that		
- what are the properties of biological original?		metaheuristics, unless the authors		
- which assumptions/simplifications have been made?		(i) present their method using the norm(ii) show that the new method brings u	nal, standard optimization terminology;	
 which properties have been implemented? are new concepts for optimization identifiable? 		(iii) motivate the use of the metaphor of		
- motto: "deflate verbal bubbles" - inspect the form		(iv) present a fair comparison with other state-of-the-art methods using		
- how did they compare algorithms' performance?		state-of-the-art practices for bench	marking algorithms.	
		-		
technische universität		📲 👔 technische universität		