

Computational Intelligence

Winter Term 2022/23

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Deep Neural Networks (DNN)

Lecture 12

G. Rudolph: Computational Intelligence • Winter Term 2022/23

DNN = Neural Network with > 3 layers

 $\underline{\text{we know}}$: L = 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?

information stored in weights of edges of network

 \rightarrow more layers \rightarrow more neurons \rightarrow more edges \rightarrow more information storable

Which additional information storage is useful?

traditionally : handcrafted features fed into 3-layer perceptron

modern viewpoint: let L-k layers learn the feature map, last k layers separate!

advantage:

human expert need not design features manually for each application domain

 \Rightarrow no expert needed, only observations!

technische universität

Lecture 12

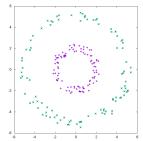
- Deep Neural Networks
 - Model
 - Training
- Convolutional Neural Networks
 - Model
 - Training

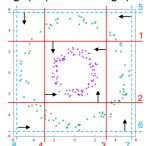
technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23

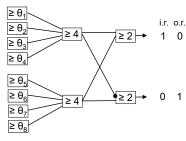
Deep Neural Networks (DNN)

Lecture 12

example: separate 'inner ring' (i.r.) / 'outer ring' (o.r.) / 'outside'







 \Rightarrow MLP with 3 layers and 12 neurons

Is there a simpler way?

observations $(x,y) \in \mathbb{R}^n \times \mathbb{B}$ feature map $F(x) = (F_1(x), \dots, F_m(x)) \in \mathbb{R}^m$

feature = measurable property of an observation or numerical transformation of observed value(s)

 \Rightarrow find MLP on transformed data points (F(x), y)

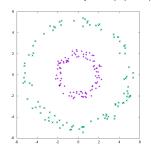
G. Rudolph: Computational Intelligence • Winter Term 2022/23

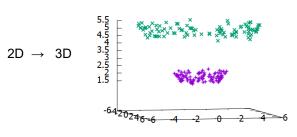
Deep Neural Networks (DNN)

Lecture 12

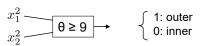
example: separate 'inner ring' / 'outer ring'

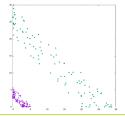
• feature map $F(x) = (x_1, x_2, \sqrt{x_1^2 + x_2^2}) \in \mathbb{R}^3$





• feature map $F(x) = (x_1^2, x_2^2) \in \mathbb{R}^2$





technische universität

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Multi-Layer Perceptrons

Lecture 12

contra:

- danger: overfitting
 - → need larger training set (expensive!)
 - → optimization needs more time
- response landscape changes
 - → more sigmoidal activiations
 - → gradient vanishes
 - → small progress in learning weights

countermeasures:

- regularization / dropout
 - → data augmentation
- → parallel hardware (multi-core / GPU)
- not necessarily bad
- → change activation functions
- → gradient does not vanish
- → progress in learning weights

vanishing gradient: (underlying principle)

 $y = f_3(f_2(f_1(x; w_1); w_2); w_3)$ forward pass

f_i ≈ activation function

backward pass

 $(f_3(f_2(f_1(x; w_1); w_2); w_3))' =$

 $f_3'(f_2(f_1(x; w_1); w_2); w_3) \cdot f_2'(f_1(x; w_1); w_2) \cdot f_1'(x; w_1)$ chain rule!

 \rightarrow repeated multiplication of values in (0,1) \rightarrow 0

■ technische universität

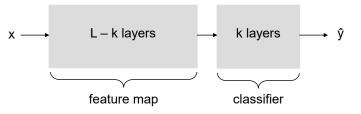
Deep Neural Networks (DNN)

Lecture 12

but: how to find useful features?

- → typically designed by experts with domain knowledge
- → traditional approach in classification:
 - 1. design & select appropriate features
 - 2. map data to feature space
 - 3. apply classification method to data in feature space

modern approach via DNN: learn feature map and classification simultaneously!



proven: MLP can approximate any continuous map with aribitrary accuracy

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Lecture 12

Deep Multi-Layer Perceptrons

vanishing gradient: $a(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}} \rightarrow a'(x) = a(x) \cdot (1 - a(x))$

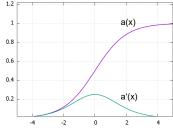
$$\forall x \in \mathbb{R}: \quad a(x) \cdot (1 - a(x)) \leq \frac{1}{4} \quad \Leftrightarrow \quad \left(a(x) - \frac{1}{2}\right)^2 \geq 0 \qquad \boxed{\square}$$

$$\Rightarrow \text{ gradient } a'(x) \in \left[0, \frac{1}{4}\right]$$

principally: desired property in learning process! if weights stabilize such that neuron almost always either fires [i.e., $a(x) \approx 1$] or not fires [i.e., $a(x) \approx 0$]

then gradient ≈ 0 and the weights are hardly changed 0.2

⇒ leads to convergence in the learning process!



while learning, updates of weights via partial derivatives:

$$\frac{\partial f(w,u;x,z^*)}{\partial w_{ij}} \ = \ 2\sum_{k=1}^K \left[\ a(u_k'y) - z_k^* \ \right] \cdot \underbrace{a'(u_k'y)}_{\leq \frac{1}{4}} \cdot u_{jk} \cdot \underbrace{a'(w_j'x)}_{\leq \frac{1}{4}} \cdot x_i \qquad \text{(L= 2 layers)}$$

 \Rightarrow in general $f_{w_{ij}} = O(4^{-L}) \rightarrow 0$ as $L \uparrow$

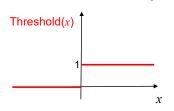
L < 3: effect neglectable; but $L \gg 3$

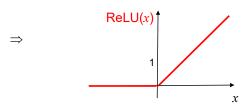
Deep Neural Networks

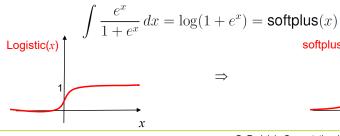
Lecture 12

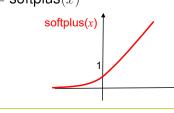
non-sigmoid activation functions

$$\int \mathbb{1}_{[x \ge 0]}(x) \, dx = \left\{ \begin{array}{ll} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{array} \right\} = \max\{0, x\} = \mathsf{ReLU}(x)$$









technische universität

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Neural Networks

Lecture 12

data augmentation (counteracts overfitting)

- → extending training set by slightly perturbed true training examples
- best applicable if inputs are **images**: translate, rotate, add noise, resize, ...

noisy

noisy + rotated

- if x is **real vector** then adding e.g. small gaussian noise → here, utility disputable (artificial sample may cross true separating line)

extra costs for acquiring additional annotated data are inevitable!

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Neural Networks

Lecture 12

dropout

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of **bagging**

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement train k models (with own exclusive training set) combine k outcomes from k models (e.g. majority voting)

- parts of network is effectively switched off e.g. multiplication of outputs with 0, e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5
- gradient descent on switching parts of network → artificial perturbation of greediness during gradient descent
- can reduce computational complexity if implemented sophistically

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Neural Networks

Lecture 12

stochastic gradient descent

partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases

update of weights

- after each training example

b = 1- after all training examples b = |B| now:

update of weights

- after b training examples where 1 < b < |B|
- search in subspaces → counteracts greediness → better generalization
- accelerates optimization methods (parallelism possible)

choice of batch size b

⇒ better approximation of gradient

b small \Rightarrow better generalization

b also depends on available hardware

often b ≈ 100 (empirically)

b too small ⇒ multi-cores underemployed

Deep Neural Networks

Lecture 12

cost functions

regression

N training samples (x_i, y_i)

insist that $f(x_i; \theta) = y_i$ for i=1,..., N

if $f(x; \theta)$ linear in θ then $\theta^T x_i = y_i$ for i=1,..., N or $X \theta = y_i$

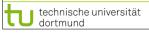
 \Rightarrow best choice for θ : least square estimator (LSE)

$$\Rightarrow (X \; \theta \; \text{--} \; y)^{\intercal} \; (X \; \theta \; \text{--} \; y) \; \rightarrow \underset{\theta}{\text{min}!}$$

in case of MLP: $f(x; \theta)$ is nonlinear in θ

 \Rightarrow best choice for θ : (nonlinear) least square estimator; aka TSSE

$$\Rightarrow \sum_{i} (f(x_i; \theta) - y_i)^2 \to \min_{\theta}!$$



G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Neural Networks

Lecture 12

here: random variable $X \in \{1, ..., C\}$ with $P\{X = i\} = q_i$ (true, but unknown)

 \rightarrow we use relative frequencies of training set $x_1, ..., x_N$ as estimator of q_i

$$\hat{q}_i = \frac{1}{N} \sum_{j=1}^N \mathbb{1}_{[x_j = i]} \quad \Rightarrow \text{there are } N \cdot \hat{q}_i \text{ samples of class } i \text{ in training set}$$

 \Rightarrow the neural network should output \hat{p} as close as possible to \hat{q} ! [actually: to q]

likelihood
$$L(\hat{p}; x_1, \dots, x_N) = \prod_{k=1}^{N} P\{X_k = x_k\} = \prod_{i=1}^{C} \hat{p}_i^{N \cdot \hat{q}_i} \to \max$$

likelihood
$$L(\hat{p}; x_1, \dots, x_N) = \prod_{k=1}^N P\{X_k = x_k\} = \prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i} \to \max!$$

$$\log L = \log \left(\prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i}\right) = \sum_{i=1}^C \log \hat{p}_i^{N \cdot \hat{q}_i} = N \underbrace{\sum_{i=1}^C \hat{q}_i \cdot \log \hat{p}_i}_{-H(\hat{q}, \hat{p})} \to \max!$$

 \Rightarrow maximizing $\log L$ leads to same solution as minimizing **cross-entropy** $H(\hat{a}, \hat{p})$

J technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Neural Networks

Lecture 12

cost functions

classification

N training samples (x_i, y_i) where $y_i \in \{1, ..., C\}$, C = #classes

- → want to estimate probability of different outcomes for unknown sample
- → decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter θ such that likelihood of sample $x_1, ..., x_N$ gets maximal as a function of θ

likelihood function

$$L(\theta; x_1, \dots, x_N) := f_{X_1, \dots, X_N}(x_1, \dots, x_N; \theta) = \prod_{i=1}^N f_X(x_i; \theta) \to \max_{\theta}!$$

■ technische universität

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Neural Networks

Lecture 12

in case of *classification*

use softmax function
$$P\{y=j\,|\,x\}=rac{e^{w_j^Tx+b_j}}{\sum_{i=1}^C e^{w_i^Tx+b_i}}$$
 in output layer

- → multiclass classification: probability of membership to class j = 1, ..., C
- → class with maximum excitation w'x+b has maximum probabilty
- → decision rule: element x is assigned to class with maximum probability

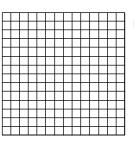
Convolutional Neural Networks (CNN)

Lecture 12

most often used in graphical applications (2-D input; also possible: k-D tensors)

layer of CNN = 3 stages

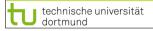
- 1. convolution 2. nonlinear activation (e.g. ReLU)
- 3. pooling



1. Convolution

local filter / kernel K(i, j) applied to each cell of image I(x, y)

$$S(x,y) = (K*I)(x,y) = \sum_{i=-\delta}^{\delta} \sum_{j=-\delta}^{\delta} I(x+i,y+j) \cdot K(i,j)$$



G. Rudolph: Computational Intelligence • Winter Term 2022/23

-2 -1 $-\delta$

example

Convolutional Neural Networks (CNN)

example: edge detection with Sobel kernel

→ two convolutions

$$\begin{aligned} \mathbf{K_x} &= \begin{pmatrix} -1,\, 0,\, 1 \\ -2,\, 0,\, 2 \\ -1,\, 0,\, 1 \end{pmatrix} & \mathbf{K_y} &= \begin{pmatrix} -1,\, -2,\, -1 \\ 0,\, 0,\, 0 \\ 1,\, 2,\, 1 \end{pmatrix} \\ & \text{yields } S_x & \text{yields } S_y \end{aligned}$$

$$S(x,y) = \sqrt{S_x(x,y)^2 + S_y(x,y)^2}$$

Lecture 12

original image I(x,y)

image S(x,y) after convolution

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Lecture 12

Convolutional Neural Networks

Lecture 12

filter / kernel

well known in image processing; typically hand-crafted!

here: values of filter matrix learnt in CNN!

actually: many filters active in CNN

e.g. horizontal line detection

stride

- = distance between two applications of a filter (horizontal s_h / vertical s_y)
- \rightarrow leads to smaller images if s_h or $s_v > 1$

padding

- = treatment of border cells if filter does not fit in image
- "valid": apply only to cells for which filter fits → leads to smaller images
- "same": add rows/columns with zero cells; apply filter to all cells (\rightarrow same size)

technische universität dortmund

Convolutional Neural Networks

$a(x) = ReLU(x^T W + c)$

2. nonlinear activation

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. **max-pooling** $m(i,j) = max(l(i+a, j+b) : a,b = -\delta, ..., 0, ... \delta)$ for $\delta > 0$

- also possible: mean, median, matrix norm, ...
- can be used to reduce matrix / output dimensions

Convolutional Neural Networks

Lecture 12

max

example: max-pooling 2x2 (iterated), stride = 2

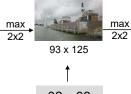
max 2x2

3000 x 4000

1500 x 2000

750 x 1000

46 x 62



375 x 500

187 x 250

32 x 32 pooling

technische universität dortmund

Convolutional Neural Networks

G. Rudolph: Computational Intelligence • Winter Term 2022/23

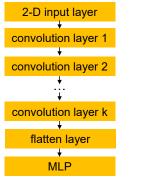
Lecture 12

G. Rudolph: Computational Intelligence • Winter Term 2022/23

CNN architecture:

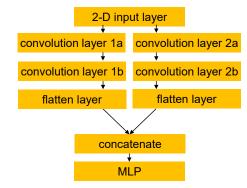
- several consecutive convolution layers (also parallel streams); possibly dropouts
- flatten layer (\rightarrow converts k-D matrix to 1-D matrix required for MLP input layer)
- fully connected MLP

examples:



technische universität

dortmund



Convolutional Neural Networks

Lecture 12

Pooling with Stride

c_{in} : columns of input
 r_{in} : rows of input
 f_c : columns of filter
 f_r : rows of filter
 s_c : stride for columns

: stride for rows

image size : $r_{in} \times c_{in}$ filter size : $f_r \times f_c$

assumptions:

$$f_c \le c_{in}$$
 $f_r \le f_{in}$

padding = valid

J dortmund

1 30

How often fits the filter in image horizontally?

$$pos_1 = 1$$

 $pos_2 = pos_1 + s_c$
 $pos_3 = pos_2 + s_c = (pos_1 + s_c) + s_c = pos_1 + 2 \cdot s_c$
:
 $pos_k = pos_1 + (k - 1) \cdot s_c$

thus, find largest k such that

$$\begin{array}{ll} & \text{pos}_1 + (k-1) \cdot s_c + (f_c - 1) \leq c_{\text{in}} \\ \Rightarrow & (k-1) \cdot s_c + f_c \leq c_{\text{in}} \\ \Rightarrow & k \leq (c_{\text{in}} - f_c) / s_c + 1 \qquad \text{(integer division!)} \end{array}$$

$$\Rightarrow \qquad \qquad k = \left\lfloor \frac{c_{in} - f_c}{s_c} \right\rfloor + 1 = c_{out}$$

[analog reasoning for rows!]

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Convolutional Neural Networks

Lecture 12

Popular CNN Architectures

technische universität

 $\verb|https://towardsdatascience.com|\\$

Name	Year	Depth	#Params
LeNet	1998		
AlexNet	2012		> 60 M
VGG16	2014	23	> 23 M
Inception-v1	2014		
ResNet50	2014		> 25 M
Inception-v3	2015	159	
Xception	2016	126	> 22 M
InceptionResNet	2017	572	> 55 M

•••

