Computational Intelligence

Winter Term 2022/23

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Plan for Today

- Deep Neural Networks
- Model
- Training
- Convolutional Neural Networks
- Model
- Training

Deep Neural Networks (DNN)

DNN = Neural Network with > 3 layers
we know: L = 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers? information stored in weights of edges of network
\rightarrow more layers \rightarrow more neurons \rightarrow more edges \rightarrow more information storable
Which additional information storage is useful?
traditionally : handcrafted features fed into 3-layer perceptron modern viewpoint : let L-k layers learn the feature map, last k layers separate!
advantage:
human expert need not design features manually for each application domain
\Rightarrow no expert needed, only observations!
dortmund

Deep Neural Networks (DNN)

example: separate 'inner ring' (i.r.) / 'outer ring' (o.r.) / 'outside'

\Rightarrow MLP with 3 layers and 12 neurons

Is there a simpler way?

observations $(x, y) \in \mathbb{R}^{n} \times \mathbb{B} \quad$ feature map $F(x)=\left(F_{1}(x), \ldots, F_{m}(x)\right) \in \mathbb{R}^{m}$
feature = measurable property of an observation or numerical transformation of observed value(s)
\Rightarrow find MLP on transformed data points ($\mathrm{F}(\mathrm{x}), \mathrm{y}$)

Deep Neural Networks (DNN)

example: separate 'inner ring' / 'outer ring'

- feature map $F(x)=\left(x_{1}, x_{2}, \sqrt{x_{1}^{2}+x_{2}^{2}}\right) \in \mathbb{R}^{3}$

- feature map $F(x)=\left(x_{1}^{2}, x_{2}^{2}\right) \in \mathbb{R}^{2}$

technische universität
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2022/23

Deep Neural Networks (DNN)

Lecture 12
but: how to find useful features?
\rightarrow typically designed by experts with domain knowledge
\rightarrow traditional approach in classification:

1. design \& select appropriate features
2. map data to feature space
3. apply classification method to data in feature space
modern approach via DNN: learn feature map and classification simultaneously!

proven: MLP can approximate any continuous map with aribitrary accuracy

Deep Multi-Layer Perceptrons

contra:

- danger: overfitting
\rightarrow need larger training set (expensive!)
\rightarrow optimization needs more time
- response landscape changes
\rightarrow more sigmoidal activiations
\rightarrow gradient vanishes
\rightarrow small progress in learning weights

countermeasures:

- regularization / dropout
\rightarrow data augmentation
\rightarrow parallel hardware (multi-core / GPU)
- not necessarily bad
\rightarrow change activation functions
\rightarrow gradient does not vanish
\rightarrow progress in learning weights
vanishing gradient: (underlying principle) forward pass $\quad y=f_{3}\left(f_{2}\left(f_{1}\left(x ; w_{1}\right) ; w_{2}\right) ; w_{3}\right) \quad f_{i} \approx$ activation function backward pass $\left(\mathrm{f}_{3}\left(\mathrm{f}_{2}\left(\mathrm{f}_{1}\left(\mathrm{x} ; \mathrm{w}_{1}\right) ; \mathrm{w}_{2}\right) ; \mathrm{w}_{3}\right)\right)^{\text {d }}=$ $\mathrm{f}_{3}{ }^{\prime}\left(\mathrm{f}_{2}\left(\mathrm{f}_{1}\left(\mathrm{x} ; \mathrm{w}_{1}\right) ; \mathrm{w}_{2}\right) ; \mathrm{w}_{3}\right) \cdot \mathrm{f}_{2}{ }^{\prime}\left(\mathrm{f}_{1}\left(\mathrm{x} ; \mathrm{w}_{1}\right) ; \mathrm{w}_{2}\right) \cdot \mathrm{f}_{1}{ }^{\prime}\left(\mathrm{x} ; \mathrm{w}_{1}\right) \quad$ chain rule!
\rightarrow repeated multiplication of values in $(0,1) \rightarrow 0$

Deep Multi-Layer Perceptrons

Lecture 12
vanishing gradient: $\quad a(x)=\frac{e^{x}}{e^{x}+1}=\frac{1}{1+e^{-x}} \quad \rightarrow \quad a^{\prime}(x)=a(x) \cdot(1-a(x))$
$\forall x \in \mathbb{R}: \quad a(x) \cdot(1-a(x)) \leq \frac{1}{4} \quad \Leftrightarrow \quad\left(a(x)-\frac{1}{2}\right)^{2} \geq 0$
\Rightarrow gradient $a^{\prime}(x) \in\left[0, \frac{1}{4}\right]$
principally: desired property in learning process!
if weights stabilize such that neuron almost always either fires [i.e., $a(x) \approx 1$] or not fires [i.e., $a(x) \approx 0$] then gradient ≈ 0 and the weights are hardly changed
\Rightarrow leads to convergence in the learning process!

while learning, updates of weights via partial derivatives:

$$
\frac{\partial f\left(w, u ; x, z^{*}\right)}{\partial w_{i j}}=2 \sum_{k=1}^{K}\left[a\left(u_{k}^{\prime} y\right)-z_{k}^{*}\right] \cdot \underbrace{a^{\prime}\left(u_{k}^{\prime} y\right)}_{\leq \frac{1}{4}} \cdot u_{j k} \cdot \underbrace{a^{\prime}\left(w_{j}^{\prime} x\right)}_{\leq \frac{1}{4}} \cdot x_{i} \quad \text { (L= } 2 \text { layers) }
$$

\Rightarrow in general $f_{w_{i j}}=O\left(4^{-L}\right) \rightarrow 0$ as $L \uparrow$ $L \leq 3$: effect neglectable; but $L \gg 3$ 区

Deep Neural Networks

non-sigmoid activation functions

$$
\int \mathbb{1}_{[x \geq 0]}(x) d x=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{array}\right\}=\max \{0, x\}=\operatorname{ReLU}(x)
$$

Deep Neural Networks

dropout

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

$$
\downarrow
$$

aka: bootstrap aggregating, model averaging, ensemble methods
create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

- parts of network is effectively switched off
e.g. multiplication of outputs with 0 ,
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5
- gradient descent on switching parts of network
\rightarrow artificial perturbation of greediness during gradient descent
- can reduce computational complexity if implemented sophistically

Deep Neural Networks

data augmentation (counteracts overfitting)
\rightarrow extending training set by slightly perturbed true training examples

- best applicable if inputs are images: translate, rotate, add noise, resize, ...

original image

rotated

resized

noisy

noisy + rotated
- if x is real vector then adding e.g. small gaussian noise \rightarrow here, utility disputable (artificial sample may cross true separating line)
extra costs for acquiring additional annotated data are inevitable!

Deep Neural Networks

stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b
traditionally: 2 extreme cases
update of weights
- after each training example $\quad b=1$
- after all training examples
now:
update of weights
- after b training examples where $1<b<|B|$
- search in subspaces \rightarrow counteracts greediness \rightarrow better generalization
- accelerates optimization methods (parallelism possible)
choice of batch size \mathbf{b}
b large $\quad \Rightarrow$ better approximation of gradient
b small \Rightarrow better generalization
b also depends on available hardware b too small \Rightarrow multi-cores underemployed

$$
\text { often } b \approx 100 \text { (empirically) }
$$

Deep Neural Networks

cost functions

- regression

N training samples $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
insist that $f\left(x_{i} ; \theta\right)=y_{i}$ for $i=1, \ldots, N$
if $f(x ; \theta)$ linear in θ then $\theta^{\top} x_{i}=y_{i}$ for $i=1, \ldots, N$ or $X \theta=y$
\Rightarrow best choice for θ : least square estimator (LSE)
$\Rightarrow(\mathrm{X} \theta-\mathrm{y})^{\top}(\mathrm{X} \theta-\mathrm{y}) \rightarrow \min _{\theta}!$
in case of MLP: $f(x ; \theta)$ is nonlinear in θ
\Rightarrow best choice for θ : (nonlinear) least square estimator; aka TSSE
$\Rightarrow \sum_{\mathrm{i}}\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} ; \theta\right)-\mathrm{y}_{\mathrm{i}}\right)^{2} \rightarrow \min _{\theta}!$

Deep Neural Networks

```
Lecture 12
```


cost functions

- classification
N training samples $\left(x_{i}, y_{i}\right)$ where $y_{i} \in\{1, \ldots, C\}, C=\#$ classes
\rightarrow want to estimate probability of different outcomes for unknown sample
\rightarrow decision rule: choose class with highest probability (given the data)
idea: use maximum likelihood estimator (MLE)
$=$ estimate unknown parameter θ such that likelihood of sample x_{1}, \ldots, x_{N} gets maximal as a function of θ
$\underline{\text { likelihood function }} L\left(\theta ; x_{1}, \ldots, x_{N}\right):=f_{X_{1}, \ldots, X_{N}}\left(x_{1}, \ldots, x_{N} ; \theta\right)=\prod_{i=1}^{N} f_{X}\left(x_{i} ; \theta\right) \rightarrow \max _{\theta}!$

Deep Neural Networks

here: random variable $X \in\{1, \ldots, C\}$ with $P\{X=i\}=q_{i}$ (true, but unknown)
\rightarrow we use relative frequencies of training set x_{1}, \ldots, x_{N} as estimator of q_{i}

$$
\hat{q}_{i}=\frac{1}{N} \sum_{j=1}^{N} \mathbb{1}_{\left[x_{j}=i\right]} \Rightarrow \text { there are } N \cdot \hat{q}_{i} \text { samples of class } i \text { in training set }
$$

\Rightarrow the neural network should output \hat{p} as close as possible to \hat{q} !
likelihood $L\left(\hat{p} ; x_{1}, \ldots, x_{N}\right)=\prod_{k=1}^{N} P\left\{X_{k}=x_{k}\right\}=\prod_{i=1}^{C} \hat{p}_{i}^{N \cdot \hat{q}_{i}} \rightarrow \max !$
$\log L=\log \left(\prod_{i=1}^{C} \hat{p}_{i}^{N \cdot \hat{q}_{i}}\right)=\sum_{i=1}^{C} \log \hat{p}_{i}^{N \cdot \hat{q}_{i}}=N \underbrace{\sum_{i=1}^{C} \hat{q}_{i} \cdot \log \hat{p}_{i}}_{-H(\hat{q}, \hat{p})} \rightarrow \max !$
\Rightarrow maximizing $\log L$ leads to same solution as minimizing cross-entropy $H(\hat{q}, \hat{p})$

Deep Neural Networks

in case of classification
use softmax function $P\{y=j \mid x\}=\frac{e^{w_{j}^{T} x+b_{j}}}{\sum_{i=1}^{C} e^{w_{i}^{T} x+b_{i}}}$ in output layer
\rightarrow multiclass classification: probability of membership to class $\mathrm{j}=1, \ldots, \mathrm{C}$
\rightarrow class with maximum excitation $w^{\prime} x+b$ has maximum probabilty
\rightarrow decision rule: element x is assigned to class with maximum probability

Convolutional Neural Networks (CNN)

most often used in graphical applications (2-D input; also possible: k-D tensors)

layer of CNN = 3 stages

1. convolution
2. nonlinear activation (e.g. ReLU)
3. pooling

1. Convolution

local filter / kernel $\mathrm{K}(\mathrm{i}, \mathrm{j})$ applied to each cell of image $\mathrm{I}(\mathrm{x}, \mathrm{y})$

$$
S(x, y)=(K * I)(x, y)=\sum_{i=-\delta}^{\delta} \sum_{j=-\delta}^{\delta} I(x+i, y+j) \cdot K(i, j)
$$

Convolutional Neural Networks (CNN)

Lecture 12

example: edge detection with Sobel kernel
\rightarrow two convolutions

$$
\mathrm{K}_{\mathrm{x}}=\underset{\substack{-1,0,1 \\
-2,0,2 \\
-1,0,1 \\
\text { yields } S_{x}}}{\left(\mathrm{~K}_{\mathrm{y}}\right.}=\underset{\text { yields } S_{y}}{\left(\begin{array}{rrr}
-1,-2, & -1 \\
0, & 0, & 0 \\
1,2, & 1
\end{array}\right)} \quad S(x, y)=\sqrt{S_{x}(x, y)^{2}+S_{y}(x, y)^{2}}
$$

original image $\mathrm{I}(\mathrm{x}, \mathrm{y})$

image $S(x, y)$ after convolution

Convolutional Neural Networks

filter / kernel

well known in image processing; typically hand-crafted!
here: values of filter matrix learnt in CNN !
actually: many filters active in CNN
$\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1\end{array}\right)$
e.g. horizontal line detection

stride

$=$ distance between two applications of a filter (horizontal $s_{h} /$ vertical s_{v})
\rightarrow leads to smaller images if s_{h} or $s_{v}>1$

padding

$=$ treatment of border cells if filter does not fit in image

- "valid" : apply only to cells for which filter fits \rightarrow leads to smaller images
- "same" : add rows/columns with zero cells; apply filter to all cells (\rightarrow same size)

Convolutional Neural Networks

2. nonlinear activation

$$
a(x)=\operatorname{ReLU}\left(x^{\top} W+c\right)
$$

3. pooling

in principle: summarizing statistic of nearby outputs
e.g. max-pooling $m(i, j)=\max (1(i+a, j+b): a, b=-\delta, \ldots, 0, \ldots \delta)$ for $\delta>0$

- also possible: mean, median, matrix norm, ...
- can be used to reduce matrix / output dimensions

Convolutional Neural Networks

Lecture 12

example: max-pooling 2×2 (iterated), stride $=2$

375×500

187×250

32×32
pooling
technische universität
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2022/23

Convolutional Neural Networks

Pooling with Stride

$\mathrm{c}_{\text {in }}$: columns of input
$r_{\text {in }}$: rows of input
$f_{c} \quad$: columns of filter
$\mathrm{f}_{\mathrm{r}} \quad$: rows of filter
$\mathrm{s}_{\mathrm{c}} \quad$: stride for columns
$\mathrm{S}_{\mathrm{r}} \quad$: stride for rows
image size : $r_{\text {in }} \times c_{\text {in }}$ filter size : $f_{r} \times f_{c}$
assumptions:
$\mathrm{f}_{\mathrm{c}} \leq \mathrm{c}_{\text {in }}$
$\mathrm{f}_{\mathrm{r}} \leq \mathrm{f}_{\mathrm{in}}$
padding = valid

How often fits the filter in image horizontally?
pos $_{1}=1$
$\mathrm{pos}_{2}=\mathrm{pos}_{1}+\mathrm{s}_{\mathrm{c}}$
$\operatorname{pos}_{3}=\operatorname{pos}_{2}+s_{\mathrm{c}}=\left(\operatorname{pos}_{1}+\mathrm{s}_{\mathrm{c}}\right)+\mathrm{s}_{\mathrm{c}}=\operatorname{pos}_{1}+2 \cdot \mathrm{~s}_{\mathrm{c}}$
$\operatorname{pos}_{\mathrm{k}}=\operatorname{pos}_{1}+(\mathrm{k}-1) \cdot \mathrm{s}_{\mathrm{c}}$
thus, find largest k such that

$$
\begin{array}{ll}
& \operatorname{pos}_{1}+(\mathrm{k}-1) \cdot \mathrm{s}_{\mathrm{c}}+\left(\mathrm{f}_{\mathrm{c}}-1\right) \leq \mathrm{c}_{\text {in }} \\
\Leftrightarrow & (\mathrm{k}-1) \cdot \mathrm{s}_{\mathrm{c}}+\mathrm{f}_{\mathrm{c}} \leq \mathrm{c}_{\text {in }} \\
\Leftrightarrow & \mathrm{k} \leq\left(\mathrm{c}_{\text {in }}-\mathrm{f}_{\mathrm{c}}\right) / \mathrm{s}_{\mathrm{c}}+1 \quad \text { (integer division!) } \\
\Rightarrow & \mathrm{k}=\left\lfloor\frac{\mathrm{c}_{\text {in }}-\mathrm{f}_{\mathrm{c}}}{\mathrm{~s}_{\mathrm{c}}}\right\rfloor+1=\mathrm{c}_{\text {out }}
\end{array}
$$

[analog reasoning for rows!]

Convolutional Neural Networks

Lecture 12

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts
- flatten layer (\rightarrow converts k-D matrix to 1-D matrix required for MLP input layer)
- fully connected MLP

examples:

Convolutional Neural Networks

Popular CNN Architectures

Name	Year	Depth	\#Params
LeNet	1998		
AlexNet	2012		$>60 \mathrm{M}$
VGG16	2014	23	$>23 \mathrm{M}$
Inception-v1	2014		
ResNet50	2014		$>25 \mathrm{M}$
Inception-v3	2015	159	
Xception	2016	126	$>22 \mathrm{M}$
InceptionResNet 2017	572	$>55 \mathrm{M}$	

Convolutional Neural Networks

Popular CNN Architectures

LeNet-5 (1998)

$\mathrm{T}=\tanh$
S = softmax

Convolutional Neural Networks

Popular CNN Architectures

AlexNet (2012)

$\mathrm{T}=\tanh$
R = ReLU
S = softmax
Used dropout

Convolutional Neural Networks

Popular CNN Architectures

VGG-16 (2014)

$\mathrm{T}=\tanh$
R = ReLU
S = softmax
Deeper than AlexNet

