Computational Intelligence

Winter Term 2022/23

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Plan for Today

- Radial Basis Function Nets (RBF Nets)
- Model
- Training
- Hopfield Networks
- Model
- Optimization

Radial Basis Function Nets (RBF Nets)

Definition:

A function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is termed radial basis function iff $\exists \varphi: \mathbb{R} \rightarrow \mathbb{R}: \forall x \in \mathbb{R}^{n}: \phi(\mathrm{x} ; \mathrm{c})=\varphi(\|\mathrm{x}-\mathrm{c}\|)$.

Definition:

RBF local iff
$\varphi(r) \rightarrow 0$ as $r \rightarrow \infty$
typically, || x || denotes Euclidean norm of vector x
examples:

$$
\varphi(r)=\exp \left(-\frac{r^{2}}{\sigma^{2}}\right)
$$

Gaussian
$\varphi(r)=\frac{3}{4}\left(1-r^{2}\right) \cdot 1_{\{r \leq 1\}}$
$\varphi(r)=\frac{\pi}{4} \cos \left(\frac{\pi}{2} r\right) \cdot 1_{\{r \leq 1\}}$
Cosine

Radial Basis Function Nets (RBF Nets)

Definition:

A function $f: R^{n} \rightarrow R$ is termed radial basis function net (RBF net)
iff $f(x)=w_{1} \varphi\left(\left\|x-c_{1}\right\|\right)+w_{2} \varphi\left(\left\|x-c_{2}\right\|\right)+\ldots+w_{p} \varphi\left(\left\|x-c_{q}\right\|\right)$

- layered net
- 1st layer fully connected
- no weights in 1st layer
- activation functions differ

Radial Basis Function Nets (RBF Nets)

given : N training patterns $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ and q RBF neurons
find : weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{q}}$ with minimal error

solution:

we know that $f\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, N$ and therefore we insist that

unknown known value known value
$\Rightarrow \sum_{k=1}^{q} w_{k} \cdot p_{i k}=y_{i} \quad \Rightarrow \mathrm{~N}$ linear equations with q unknowns

Radial Basis Function Nets (RBF Nets)

in matrix form: $\mathrm{Pw}=\mathrm{y}$
case $N=q: \quad w=P^{-1} y \quad$ if P has full rank
case N < q: many solutions
case $N>q: \quad w=P^{+} y$
$\mathrm{Pw}=\mathrm{y}$
P'Pw= P‘y
$\underbrace{\left(P^{\prime} P\right)^{-1} P^{\prime} P}_{\text {unit matrix }} w=\underbrace{\left(P^{\prime} P\right)^{-1} P^{\prime} y}_{P^{+}}$
with $P=\left(p_{i k}\right)$ and $P: N x q, y: N x 1, w: q \times 1$,
but of no practical relevance
where P^{+}is Moore-Penrose pseudo inverse
$\mid \cdot P^{\prime}$ from left hand side (P^{\prime} is transpose of P)
$\mid \cdot\left(P^{\prime} P\right)^{-1}$ from left hand side
simplify

- existence of ($\left.\mathrm{P}^{\prime} \mathrm{P}\right)^{-1}$?
- numerical stability?

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

idea:

choose $\left(P^{\prime} P+h I_{q}\right)^{-1}$ instead of $\left(P^{\prime} P\right)^{-1} \quad\left(h>0, I_{q}\right.$ is q-dim. unit matrix $)$
excursion to linear algebra:
Def : matrix A positive semidefinite (p.s.d) iff $\forall x \in \mathbb{R}^{n}: x^{\prime} A x \geq 0$
Def : matrix A positive definite (p.d.) iff $\forall x \in \mathbb{R}^{n} \backslash\{0\}: x^{\prime} A x>0$
Thm : matrix $A: n \times n$ regular $\Leftrightarrow \operatorname{rank}(A)=n \Leftrightarrow A^{-1}$ exists $\Leftarrow A$ is p.d.
Lemma : $a, b>0, A, B: n \times n, A$ p.d. and B p.s.d. $\Rightarrow a \cdot A+b \cdot B$ p.d.
Proof : $\forall x \in \mathbb{R}^{n} \backslash\{0\}: x^{\prime}(a \cdot A+b \cdot B) x=\underbrace{a}_{>} \cdot \underbrace{x^{\prime} A x}+\underbrace{b}_{>} \cdot \underbrace{x^{\prime} B x}>0 \quad$ q.e.d.

Lemma: $P: n \times q \Rightarrow P^{\prime} P$ p.s.d.
Proof : $\forall x \in \mathbb{R}^{n}: x^{\prime}\left(P^{\prime} P\right) x=\left(x^{\prime} P^{\prime}\right) \cdot(P x)=(P x)^{\prime}(P x)=\|P x\|_{2}^{2} \geq 0 \quad$ q.e.d.

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

$\Rightarrow\left(P^{\prime} P+h I_{q}\right)$ is p.d. $\Rightarrow\left(P^{\prime} P+h I_{q}\right)^{-1}$ exists
question: how to justify this particular choice?
$\|P w-y\|^{2}+h \cdot\|w\|^{2} \quad \rightarrow \min _{w}!$
interpretation: minimize TSSE and prefer solutions with small values!
$\frac{d}{d w}\left[(P w-y)^{\prime}(P w-y)+h \cdot w^{\prime} w\right]=$
$\frac{d}{d w}\left[\left(w^{\prime} P^{\prime} P w-w^{\prime} P^{\prime} y-y^{\prime} P w+y^{\prime} y+h \cdot w^{\prime} w\right]=\right.$
$2 P^{\prime} P w-2 P^{\prime} y+2 h w=2\left(P^{\prime} P+h I_{q}\right) w-2 P^{\prime} y \stackrel{!}{=} 0$
$\Rightarrow w^{*}=\left(P^{\prime} P+h I_{q}\right)^{-1} P^{\prime} y$
$\frac{d}{d w}\left[2\left(P^{\prime} P+h I_{q}\right) w-2 P^{\prime} y\right]=2\left(P^{\prime} P+h I_{q}\right)$ is p.d. $\quad \Rightarrow$ minimum

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

question: how to find appropriate $h>0$ in $\left(P^{\prime} P+h I_{q}\right)$?
let $\operatorname{PERF}(h ; T)$ with PERF $: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$measure the performance of RBF net for positive h and given training set T
find h^{*} such that $\operatorname{PERF}\left(h^{*} ; T\right)=\max \left\{\operatorname{PERF}(h ; T): h \in \mathbb{R}^{+}\right\}$
\rightarrow several approaches in use
\rightarrow here: grid search and crossvalidation
(1) choose $n \in \mathbb{N}$ and $h_{1}, \ldots, h_{n} \in(0, H] \subset \mathbb{R}^{+}$; set $p^{*}=0$
(2) for $i=1$ to n
(3) $p_{i}=\operatorname{PERF}\left(h_{i} ; T\right)$
(4) if $p_{i}>p^{*}$
(5) $p^{*}=p_{i} ; k=i$;
(6) endif
(7) endfor
(8) return h_{k}

Radial Basis Function Nets (RBF Nets)

Crossvalidation

choose $k \in \mathbb{N}$ with $k<|T|$
let T_{1}, \ldots, T_{k} be partition of training set T

$$
\begin{aligned}
& T_{1} \cup \ldots \cup T_{k}=T \\
& T_{i} \cap T_{j}=\emptyset \text { for } i \neq j
\end{aligned}
$$

$\operatorname{PERF}(h ; T)=$
(1) set err $=0$
(2) for $i=1$ to k
(3) build matrix P and vector y from $T \backslash T_{i}$
(4) get weights $w=\left(P^{\prime} P+h I\right)^{-1} P^{\prime} y$
(5) build matrix P and vector y from T_{i}
(6) get error $e=(P w-y)^{\prime}(P w-y)$
(7) $e r r=e r r+e$
(8) endfor
(9) return $1 / e r r$

Radial Basis Function Nets (RBF Nets)

```
complexity (naive)
w = (P'P) -1 P' y
P'P: N`\mp@code{qu inversion: q}
O(N2q) elementary operations
```

remark: if N large then inaccuracies for P'P likely
\Rightarrow first analytic solution, then gradient descent starting from this solution

Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given
\Rightarrow center c_{k} and radii σ considered given and known
how to choose c_{k} and σ ?

uniform covering

if training patterns inhomogenously distributed then first cluster analysis
choose center of basis function from each cluster, use cluster size for setting σ

Radial Basis Function Nets (RBF Nets)

advantages:

- additional training patterns \rightarrow only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs
(if output close to zero, verify that output of each basis function is close to zero)

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

Radial Basis Function Nets (RBF Nets)

Lecture 14

Example: XOR via RBF

training data: $\quad(0,0),(1,1)$ with value -1
$(0,1),(1,0)$ with value +1

$$
\varphi(r)=\exp \left(-\frac{1}{\sigma^{2}} r^{2}\right)
$$

choose Gaussian kernel; set $\sigma=1$; set centers c_{i} to training points

$$
\hat{f}(x)=w_{1} \varphi\left(\left\|x-c_{1}\right\|\right)+w_{2} \varphi\left(\left\|x-c_{2}\right\|\right)+w_{3} \varphi\left(\left\|x-c_{3}\right\|\right)+w_{4} \varphi\left(\left\|x-c_{4}\right\|\right)
$$

$P=\left(\begin{array}{cccc}1 & e^{-1} & e & e^{-2} \\ e^{-1} & 1 & e^{-2} & e^{-1} \\ e^{-1} & e^{-2} & 1 & e^{-1} \\ e^{-2} & e^{-1} & e^{-1} & 1\end{array}\right) y=\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ -1\end{array}\right) \quad w^{*}=P^{-1} y=\frac{e^{2}}{(e-1)^{2}}\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ -1\end{array}\right)$

Radial Basis Function Nets (RBF Nets)

Example: XOR via RBF

$\hat{f}(x)=\frac{e^{2}}{(e-1)^{2}} \cdot\left[-e^{-x_{1}^{2}-x_{2}^{2}}+e^{-x_{1}^{2}-\left(x_{2}-1\right)^{2}}+e^{-\left(x_{1}-1\right)^{2}-x_{2}^{2}}-e^{-\left(x_{1}-1\right)^{2}-\left(x_{2}-1\right)^{2}}\right]$

Hopfield Network

proposed 1982

characterization:

- neurons preserve state until selected at random for update
- bipolar states: $x \in\{-1,+1\}^{n}$
- n neurons fully connected
- symmetric weight matrix
- no self-loops (\rightarrow zero main diagonal entries)
- thresholds θ, neuron i fires if excitations larger than θ_{i}

transition: select index k at random, new state is $\tilde{x}=\operatorname{sgn}(x W-\theta)$

$$
\text { where } \tilde{x}=\left(x_{1}, \ldots, x_{k-1}, \tilde{x}_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

energy of state x is $E(x)=-\frac{1}{2} x W x^{\prime}+\theta x^{\prime}$

Hopfield Network

Lecture 14

Fixed Points

Definition

x is fixed point of a Hopfield network iff $x=\operatorname{sgn}\left(x^{\prime} W-\theta\right)$.

Example:
Set $W=x x^{\prime}$ and choose θ with $\left|\theta_{i}\right|<n$, where $x \in\{-1,+1\}^{n}$.
$\rightarrow \operatorname{sgn}\left(x^{\prime} W-\theta\right)=\operatorname{sgn}\left(x^{\prime}\left(x x^{\prime}\right)\right)=\operatorname{sgn}\left(\left(x^{\prime} x\right) x^{\prime}-\theta\right)=\operatorname{sgn}\left(\|x\|^{2} x^{\prime}-\theta\right)$
Note that $\|x\|^{2}=n$ for all $x \in\{-1,+1\}^{n}$.
$\rightarrow x_{i}=+1: \quad \operatorname{sgn}\left(n \cdot(+1)-\theta_{i}\right)=+1$ iff $+n-\theta_{i} \geq 0 \Leftrightarrow \theta_{i} \leq+n$
$\rightarrow x_{i}=-1: \operatorname{sgn}\left(n \cdot(-1)-\theta_{i}\right)=-1$ iff $-n-\theta_{i}<0 \Leftrightarrow \theta_{i}>-n$

Theorem:

If $W=x x^{\mathfrak{c}}$ and $\left|\theta_{i}\right|<n$ then x is fixed point of a Hopfield network.

Hopfield Network (HN)

Concept of Energy Function

given: HN with $\mathrm{W}=\mathrm{x} x \quad \Rightarrow \mathrm{x}$ is stable state of HN
starting point $\mathbf{x}^{(0)}$

$$
\Rightarrow \mathbf{x}^{(1)}=\operatorname{sgn}\left(x^{(0)} \mathfrak{W}-\theta\right)
$$

\Rightarrow excitation $\mathrm{e}=\mathrm{W} \mathrm{x}^{(1)}-\theta$
\Rightarrow if $\operatorname{sign}(e)=x^{(0)}$ then $x^{(0)}$ stable state
small angle between $e^{\text {f }}$ and $\mathrm{x}^{(0)}$
$\Leftarrow \quad \begin{gathered}\text { true if } \\ \mathrm{e}^{\text {c }} \text { close to } \mathrm{x}^{(0)}\end{gathered}$

recall: $\frac{a b^{\prime}}{\|a\| \cdot\|b\|}=\cos \angle(a, b)$

small angle $\alpha \Rightarrow$ large $\cos (\alpha)$

Hopfield Network（HN）

Concept of Energy Function

required：
small angle between $e=W x^{(0)}-\theta$ and $x^{(0)}$
\Rightarrow larger cosine of angle indicates greater similarity of vectors
$\Rightarrow \forall \mathrm{e}^{\prime}$ of equal size：try to maximize $x^{(0)} \mathrm{e}^{‘}=\underbrace{\left\|x^{(0)}\right\|}_{\text {fixed }} \cdot \underbrace{\|\mathrm{e}\|}_{\text {fixed }} \cdot \underbrace{\cos \angle\left(x^{(0)}, \mathrm{e}\right)}_{\rightarrow \text { max！}}$

\Rightarrow identical to minimize $-x^{(0)}{ }^{〔} \mathbf{W} \mathbf{x}^{(0)}+\theta^{\mathfrak{c}} \mathbf{x}^{(0)}$

Definition

Energy function of HN at iteration t is $E\left(x^{(t)}\right)=-\frac{1}{2} x^{(t)}{ }^{〔} W x^{(t)}+\theta^{〔} x^{(0)}$

Hopfield Network

Lecture 14

Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates.

Proof: assume that x_{k} has been updated $\tilde{x}_{k}=-x_{k}$ and $\tilde{x}_{i}=x_{i}$ for $i \neq k$
$E(x)-E(\tilde{x})=-\frac{1}{2} x W x^{\prime}+\theta x^{\prime}+\frac{1}{2} \tilde{x} W \tilde{x}^{\prime}-\theta \tilde{x}^{\prime}$
$=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} x_{i} x_{j}+\sum_{i=1}^{n} \theta_{i} x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} \tilde{x}_{i} \tilde{x}_{j}-\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}$
$=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(x_{i} x_{j}-\tilde{x}_{i} \tilde{x}_{j}\right)+\sum_{i=1}^{n} \theta_{i} \underbrace{\left(x_{i}-\tilde{x}_{i}\right)}_{=0 \text { if } \mathrm{i} \neq \mathrm{k}}$
$=-\frac{1}{2} \sum_{\substack{i=1 \\ i \neq k}}^{n} \sum_{j=1}^{n} w_{i j}\left(x_{i} x_{j}-\tilde{x}_{i} \tilde{x}_{j}\right)-\frac{1}{2} \sum_{j=1}^{n} w_{\substack{ \\x_{i}}}^{n} \|_{k j}\left(x_{k} x_{j}-\tilde{x}_{k} \tilde{x}_{j}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right)$

$$
\begin{aligned}
& =-\frac{1}{2} \sum_{\substack{i=1 \\
i \neq k}}^{n} \sum_{j=1}^{n} w_{i j} x_{i} \underbrace{\left.x_{j}-\tilde{x}_{j}\right)}_{=0 \text { if } \mathrm{j} \neq \mathrm{k}}-\frac{1}{2} \sum_{\substack{j=1 \\
j \neq k}}^{n} w_{k j} x_{j}\left(x_{k}-\tilde{x}_{k}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right) \\
& =-\frac{1}{2} \sum_{\substack{i=1 \\
i \neq k}}^{n} w_{i k} x_{i}\left(x_{k}-\tilde{x}_{k}\right)-\frac{1}{2} \sum_{\substack{j=1 \\
j \neq k}}^{n} w_{k j} x_{j}\left(x_{k}-\tilde{x}_{k}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right) \\
& =-\sum_{i=1}^{n} w_{i k} x_{i}\left(x_{k}-\tilde{x}_{k}\right)+\theta_{k}\left(x_{k}-\tilde{x}_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& >0 \text { if } \mathrm{x}_{\mathrm{k}}<0 \text { and vice versa }
\end{aligned}
$$

Hopfield Network

\Rightarrow every update (change of state) decreases energy function
\Rightarrow since number of different bipolar vectors is finite
update stops after finite \#updates
remark: dynamics of HN get stable in local minimum of energy function!
q.e.d.
\Rightarrow Hopfield network can be used to optimize combinatorial optimization problems!

Hopfield Network

Application to Combinatorial Optimization

Idea:

- transform combinatorial optimization problem as objective function with $x \in\{-1,+1\}^{n}$
- rearrange objective function to look like a Hopfield energy function
- extract weights W and thresholds θ from this energy function
- initialize a Hopfield net with these parameters W and θ
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem

Hopfield Network

Example I: Linear Functions

$$
f(x)=\sum_{i=1}^{n} c_{i} x_{i} \quad \rightarrow \min !\quad\left(x_{i} \in\{-1,+1\}\right)
$$

Evidently: $E(x)=f(x)$ with $W=0$ and $\theta=c$
\Downarrow
choose $x^{(0)} \in\{-1,+1\}^{n}$
set iteration counter $t=0$
repeat
choose index k at random
$x_{k}^{(t+1)}=\operatorname{sgn}\left(x^{(t)} \cdot W_{\cdot, k}-\theta_{k}\right)=\operatorname{sgn}\left(x^{(t)} \cdot 0-c_{k}\right)=-\operatorname{sgn}\left(c_{k}\right)= \begin{cases}-1 & \text { if } c_{k}>0 \\ +1 & \text { if } c_{k}<0\end{cases}$
increment t
until reaching fixed point
\Rightarrow fixed point reached after $\Theta(\mathrm{n} \log \mathrm{n})$ iterations on average
[proof: \rightarrow black board]

Hopfield Network

Example II: MAXCUT

given: graph with n nodes and symmetric weights $\omega_{\mathrm{ij}}=\omega_{\mathrm{ji}}$, $\omega_{\mathrm{ij}}=0$, on edges
task: find a partition $\mathrm{V}=\left(\mathrm{V}_{0}, \mathrm{~V}_{1}\right)$ of the nodes such that the weighted sum of edges with one endpoint in V_{0} and one endpoint in V_{1} becomes maximal
encoding: $\forall \mathrm{i}=1, \ldots, \mathrm{n}: \quad \mathrm{y}_{\mathrm{i}}=0$, node i in set $\mathrm{V}_{0} ; \quad \mathrm{y}_{\mathrm{i}}=1$, node i in set V_{1}
objective function: $f(y)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}\left[y_{i}\left(1-y_{j}\right)+y_{j}\left(1-y_{i}\right)\right] \quad \rightarrow \max !$
preparations for applying Hopfield network
step 1: conversion to minimization problem
step 2: transformation of variables
step 3: transformation to "Hopfield normal form"
step 4: extract coefficients as weights and thresholds of Hopfield net

Hopfield Network

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

$$
\Rightarrow \text { multiply function with }-1 \Rightarrow E(y)=-f(y) \rightarrow \min !
$$

step 2: transformation of variables

$$
\begin{aligned}
& \Rightarrow \mathrm{y}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}+1\right) / 2 \\
& \begin{aligned}
\Rightarrow f(x) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}\left[\frac{x_{i}+1}{2}\left(1-\frac{x_{j}+1}{2}\right)+\frac{x_{j}+1}{2}\left(1-\frac{x_{i}+1}{2}\right)\right] \\
& =\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}\left[1-x_{i} x_{j}\right] \\
& =\underbrace{\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j}}_{\text {constant value (does not affect location of optimal solution) }}-\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j} x_{i} x_{j}
\end{aligned}
\end{aligned}
$$

Hopfield Network

Example II: MAXCUT (continued)

step 3: transformation to "Hopfield normal form"

$$
\begin{aligned}
E(x) & =\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j} x_{i} x_{j}=-\frac{1}{2} \sum_{i=1}^{n} \sum_{i \neq 1}^{n} \underbrace{\left(-\frac{1}{2} \omega_{i j}\right.}_{\mathbf{w}_{\mathrm{ij}}}) x_{i} x_{j} \\
& =-\frac{1}{2} x^{\prime} W x+\theta^{\prime} x
\end{aligned}
$$

step 4: extract coefficients as weights and thresholds of Hopfield net
$w_{i j}=-\frac{\omega_{i j}}{2}$ for $i \neq j, \quad w_{i i}=0, \quad \theta_{i}=0$
remark: $\omega_{i j}$: weights in graph - $w_{i j}:$ weights in Hopfield net

