

Computational Intelligence

Winter Term 2022/23

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Radial Basis Function Nets (RBF Nets)
 - Model
 - Training
- Hopfield Networks
 - Model
 - Optimization

	Radial Basis Function Nets (RBF Nets)	Lecture 14
	Definition:	Definition:
	A function $\phi:\mathbb{R}^n\to\mathbb{R}$ is termed radial basis function	RBF local iff
	$\inf \exists \varphi : \mathbb{R} \to \mathbb{R} : \forall x \in \mathbb{R}^n : \phi(x; c) = \varphi(\ x - c\). \Box$	$\phi(\mathbf{r}) \rightarrow 0 \text{ as } \mathbf{r} \rightarrow \infty$

typically, || x || denotes Euclidean norm of vector x

examples:

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Definition:

A function f: $\mathbb{R}^n \to \mathbb{R}$ is termed radial basis function net (RBF net)

 $\text{iff } f(x) = w_1 \ \phi(|| \ x - c_1 \ || \) + w_2 \ \phi(|| \ x - c_2 \ || \) \ + \ \dots \ + \ w_p \ \phi(|| \ x - c_q \ || \) \qquad \square$

G. Rudolph: Computational Intelligence • Winter Term 2022/23

- given : N training patterns (x_i, y_i) and q RBF neurons
- find : weights $w_1, ..., w_q$ with minimal error

solution:

we know that $f(x_i) = y_i$ for i = 1, ..., N and therefore we insist that

in matrix form: P w = y with $P = (p_{ik})$ and P: N x q, y: N x 1, w: q x 1,

case N = q: $w = P^{-1} y$ if P has full rank

case N < q: many solutions but of no practical relevance

case N > q: $w = P^+ y$ where P^+ is Moore-Penrose pseudo inverse

P w = y

P'Pw = P'y

 $(P'P)^{-1}P'P w = (P'P)^{-1}P' y$ unit matrix P⁺

 $| \cdot P'$ from left hand side (P' is transpose of P)

 $| \cdot (P'P)^{-1}$ from left hand side

simplify

Tikhonov Regularization (1963)

idea: choose $(P'P + h I_q)^{-1}$ instead of $(P'P)^{-1}$ (h > 0, I_q is q-dim. unit matrix)

excursion to linear algebra:

Def : matrix A positive semidefinite (p.s.d) iff $\forall x \in \mathbb{R}^n : x'Ax \ge 0$ Def : matrix A positive definite (p.d.) iff $\forall x \in \mathbb{R}^n \setminus \{0\} : x'Ax > 0$ Thm : matrix $A : n \times n$ regular $\Leftrightarrow \operatorname{rank}(A) = n \Leftrightarrow A^{-1}$ exists $\Leftarrow A$ is p.d.

Lemma : a, b > 0, $A, B : n \times n$, A p.d. and B p.s.d. $\Rightarrow a \cdot A + b \cdot B$ p.d.

$$\mathsf{Proof} \quad : \ \forall x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = \underbrace{a}_{>0} \cdot \underbrace{x'Ax}_{>0} + \underbrace{b}_{>0} \cdot \underbrace{x'Bx}_{>0} > 0 \qquad \qquad \mathsf{q.e.d}$$

Lemma : $P : n \times q \Rightarrow P'P$ p.s.d.

 $\mathsf{Proof} \quad : \; \forall x \in \mathbb{R}^n : x'(P'P)x = (x'P') \cdot (Px) = (Px)'(Px) = \|Px\|_2^2 \ge 0 \qquad \text{q.e.d.}$

Tikhonov Regularization (1963)

 $\Rightarrow (P'P + h I_q) \text{ is p.d.} \Rightarrow (P'P + h I_q)^{-1} \text{ exists}$

question: how to justify this particular choice?

$$||Pw - y||^2 + h \cdot ||w||^2 \quad \to \min_w!$$

interpretation: minimize TSSE and prefer solutions with small values!

$$\frac{d}{dw} [(Pw - y)'(Pw - y) + h \cdot w'w] = \\ \frac{d}{dw} [(w'P'Pw - w'P'y - y'Pw + y'y + h \cdot w'w] = \\ 2P'Pw - 2P'y + 2hw = 2(P'P + hI_q)w - 2P'y \stackrel{!}{=} 0 \\ \Rightarrow w^* = (P'P + hI_q)^{-1}P'y$$

 $\frac{d}{dw}[2(P'P+hI_q)w-2P'y]=2(P'P+hI_q) \text{ is p.d.} \Rightarrow \text{minimum}$

Tikhonov Regularization (1963)

question: how to find appropriate h > 0 in $(P'P + h I_q)$?

let PERF(h;T) with $PERF: \mathbb{R}^+ \to \mathbb{R}^+$ measure the performance of RBF net for positive h and given training set T

find h^* such that $\operatorname{PERF}(h^*;T) = \max\{\operatorname{PERF}(h;T) : h \in \mathbb{R}^+\}$

 \rightarrow several approaches in use

 \rightarrow <u>here:</u> grid search and crossvalidation

```
(1) choose n \in \mathbb{N} and h_1, \ldots, h_n \in (0, H] \subset \mathbb{R}^+; set p^* = 0

(2) for i = 1 to n

(3) p_i = \operatorname{PERF}(h_i; T)

(4) if p_i > p^*

(5) p^* = p_i; k = i;

(6) endif

(7) endfor

(8) return h_k grid search
```

Crossvalidation

choose $k \in \mathbb{N}$ with k < |T|let T_1, \ldots, T_k be partition of training set T

PERF(h;T) =(1) set err = 0(2) for i = 1 to k(3) build matrix P and vector y from $T \setminus T_i$ (4) get weights $w = (P'P + h I)^{-1}P'y$ (5) build matrix P and vector y from T_i (6) get error e = (Pw - y)'(Pw - y)(7) err = err + e(8) endfor (9) return 1/err $T_1 \cup \ldots \cup T_k = T$ $T_i \cap T_j = \emptyset$ for $i \neq j$

Lecture 14

technische universität dortmund

remark: if N large then inaccuracies for P'P likely

 \Rightarrow first analytic solution, then gradient descent starting from this solution

requires differentiable basis functions!

Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given

 \Rightarrow center c_k and radii σ considered given and known

how to choose c_k and σ ?

uniform covering

if training patterns inhomogenously distributed then first cluster analysis

Lecture 14

choose center of basis function from each cluster, use cluster size for setting σ

advantages:

- additional training patterns \rightarrow only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs
 - (if output close to zero, verify that output of each basis function is close to zero)

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

Example: XOR via RBF

training data: (0,0), (1,1) with value -1 (0,1), (1,0) with value +1 $\varphi(r) = \exp\left(-\frac{1}{\sigma^2} r^2\right)$

choose Gaussian kernel; set σ = 1; set centers c_i to training points

$$\hat{f}(x) = w_1 \varphi(\|x - c_1\|) + w_2 \varphi(\|x - c_2\|) + w_3 \varphi(\|x - c_3\|) + w_4 \varphi(\|x - c_4\|)$$

$$\hat{f}(0,0) = w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + e^{-2} \cdot w_4 \stackrel{!}{=} -1$$

$$\hat{f}(0,1) = e^{-1} \cdot w_1 + w_2 + e^{-2} \cdot w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1$$

$$\hat{f}(1,0) = e^{-1} \cdot w_1 + e^{-2} \cdot w_2 + w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1$$

$$\hat{f}(1,1) = e^{-2} \cdot w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + w_4 \stackrel{!}{=} -1$$

$$P = \begin{pmatrix} 1 & e^{-1} & e & e^{-2} \\ e^{-1} & 1 & e^{-2} & e^{-1} \\ e^{-1} & e^{-2} & 1 & e^{-1} \\ e^{-2} & e^{-1} & e^{-1} & 1 \end{pmatrix} \quad y = \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \quad w^* = P^{-1} y = \frac{e^2}{(e-1)^2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Example: XOR via RBF

Hopfield Network

proposed 1982

characterization:

- neurons preserve state until selected at random for update
- bipolar states: $x \in \{ -1, +1 \}^n$
- n neurons fully connected
- symmetric weight matrix
- no self-loops (\rightarrow zero main diagonal entries)
- thresholds θ , neuron i fires if excitations larger than θ_{i}

transition: select index k at random, new state is $\tilde{x} = \text{sgn}(xW - \theta)$

where
$$\tilde{x} = (x_1, ..., x_{k-1}, \tilde{x}_k, x_{k+1}, ..., x_n)$$

energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$

Fixed Points

Definition

x is *fixed point* of a Hopfield network iff $x = sgn(x' W - \theta)$.

Example:

Set W = x x' and choose θ with $|\theta_i| < n$, where $x \in \{-1, +1\}^n$.

→ sgn(x' W - θ) = sgn(x' (x x')) = sgn((x'x) x' - θ) = sgn(|| x ||² x' - θ) Note that || x ||² = n for all x ∈ {-1, +1}ⁿ.

$$\rightarrow x_i = +1: \quad \text{sgn}(n \cdot (+1) - \theta_i) = +1 \quad \text{iff} \quad +n - \theta_i \ge 0 \quad \Leftrightarrow \quad \theta_i \le +n \\ \rightarrow x_i = -1: \quad \text{sgn}(n \cdot (-1) - \theta_i) = -1 \quad \text{iff} \quad -n - \theta_i < 0 \quad \Leftrightarrow \quad \theta_i > -n$$

Theorem:

If W = x x' and $|\theta_i| < n$ then x is fixed point of a Hopfield network.

dortmund

Lecture 14

Concept of Energy Function

Concept of Energy Function

required:

small angle between $e = W x^{(0)} - \theta$ and $x^{(0)}$

 \Rightarrow larger cosine of angle indicates greater similarity of vectors

 $\Rightarrow \forall e' \text{ of equal size: try to maximize } x^{(0)} e' = || x^{(0)} || \cdot || e || \cdot \underbrace{cos \angle (x^{(0)}, e)}_{\text{fixed}}$

 \Rightarrow maximize $x^{(0)}$, $e = x^{(0)}$, $(W x^{(0)} - \theta) = x^{(0)}$, $W x^{(0)} - \theta$, $x^{(0)}$

 \Rightarrow identical to minimize $-x^{(0)}$, $W x^{(0)} + \theta$, $x^{(0)}$

Definition

Energy function of HN at iteration t is E($x^{(t)}$) = $-\frac{1}{2}x^{(t)}$, W $x^{(t)} + \theta$, $x^{(0)}$

Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates.

assume that x_k has been updated $\tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$ **Proof:** $E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$ $= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^{n} \theta_i \tilde{x}_i$ $= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(x_i x_j - \tilde{x}_i \tilde{x}_j \right) + \sum_{i=1}^{n} \theta_i \left(\underbrace{x_i - \tilde{x}_i}_{\gamma} \right)$ $= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} \left(x_i x_j - \tilde{x}_i \tilde{x}_j \right) - \frac{1}{2} \sum_{\substack{j=1\\i\neq k}}^{n} w_{kj} \left(x_k x_j - \tilde{x}_k \tilde{x}_j \right) + \theta_k \left(x_k - \tilde{x}_k \right)$

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23 20

$$= -\frac{1}{2} \sum_{\substack{i=1\\i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$
 (rename j to i, recall W = W', w_{kk} = 0)

$$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

$$= -(x_k - \tilde{x}_k) \left[\underbrace{\sum_{i=1}^n w_{ik} x_i}_{\text{excitation } \mathbf{e}_k} - \theta_k \right] > 0 \quad \text{since:} \\ \underbrace{\frac{x_k \quad x_k - \tilde{x}_k \quad e_k - \theta_k \quad \Delta E}{+1 \quad > 0 \quad < 0 \quad > 0}}_{-1 \quad < 0 \quad > 0 \quad > 0 \quad > 0}$$

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23 21

 \Rightarrow every update (change of state) decreases energy function

⇒ since number of different bipolar vectors is finite update stops after finite #updates

remark: dynamics of HN get stable in local minimum of energy function!

 \Rightarrow Hopfield network can be used to optimize combinatorial optimization problems!

q.e.d.

Application to Combinatorial Optimization

<u>ldea:</u>

- transform combinatorial optimization problem as objective function with $x \in \{-1,+1\}^n$
- rearrange objective function to look like a Hopfield energy function
- extract weights W and thresholds $\boldsymbol{\theta}$ from this energy function
- initialize a Hopfield net with these parameters W and $\boldsymbol{\theta}$
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem

m

Example I: Linear Functions

$$f(x) = \sum_{i=1}^{n} c_i x_i \quad \to \min! \quad (x_i \in \{-1, +1\})$$

Evidently: E(x) = f(x) with W = 0 and $\theta = c$

$$\Downarrow$$

choose $x^{(0)} \in \{-1, +1\}^n$ set iteration counter t = 0

repeat

choose index k at random

$$x_k^{(t+1)} = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t)} \cdot 0 - c_k) = -\operatorname{sgn}(c_k) = \begin{cases} -1 & \text{if } c_k > 0 \\ +1 & \text{if } c_k < 0 \end{cases}$$

increment t

until reaching fixed point

\Rightarrow fixed point reached after $\Theta(n \log n)$ iterations on average

[proof: \rightarrow black board]

Example II: MAXCUT

<u>given:</u> graph with n nodes and symmetric weights $\omega_{ij} = \omega_{ji}$, $\omega_{ii} = 0$, on edges

<u>task</u>: find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

<u>encoding</u>: $\forall i=1,...,n$: $y_i = 0$, node i in set V_0 ; $y_i = 1$, node i in set V_1

objective function:
$$f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i \left(1 - y_j \right) + y_j \left(1 - y_i \right) \right] \rightarrow \max!$$

preparations for applying Hopfield network

- step 1: conversion to minimization problem
- step 2: transformation of variables
- step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

Example II: MAXCUT (continued)

<u>step 1:</u> conversion to minimization problem

 \Rightarrow multiply function with -1 $\Rightarrow E(y) = -f(y) \rightarrow min!$

step 2: transformation of variables $\Rightarrow y_i = (x_i+1) / 2$

$$\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_i + 1}{2} \left(1 - \frac{x_j + 1}{2} \right) + \frac{x_j + 1}{2} \left(1 - \frac{x_i + 1}{2} \right) \right]$$
$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_i x_j \right]$$
$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j$$

constant value (does not affect location of optimal solution)

G. Rudolph: Computational Intelligence • Winter Term 2022/23

Example II: MAXCUT (continued)

step 3: transformation to "Hopfield normal form"

$$E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{\substack{i=1 \ j=1 \\ i \neq j}}^{n} \sum_{\substack{i=1 \ j=1 \\ i \neq j}}^{n} \left(-\frac{1}{2} \omega_{ij} \right) x_i x_j$$
$$= -\frac{1}{2} x' W x + \theta' x$$
$$\downarrow$$
$$0'$$

step 4: extract coefficients as weights and thresholds of Hopfield net

$$w_{ij} = -\frac{\omega_{ij}}{2}$$
 for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23