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Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”
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Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”

actually it’s only an algorithm, a
randomised search heuristic (RSH)

Goal: optimisation

Here: discrete search spaces, combinatorial optimisation, in
particular pseudo-boolean functions

Optimise f : {0, 1}n → R
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Why Do We Consider Randomised Search Heuristics?

Not enough resources (time, money, knowledge)
for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .
of Randomised Search Heuristics

“And they are surprisingly successful . . . ”
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Why Do We Consider Randomised Search Heuristics?

Not enough resources (time, money, knowledge)
for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .
of Randomised Search Heuristics

“And they are surprisingly successful . . . ”

Point of view

Do not only consider RSHs empirically. We need a solid theory to
understand how (and when) they work.
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What RSHs Do We Consider?

Theoretically considered RSHs

(1+1) EA

(1+λ) EA (offspring population)

(µ+1) EA (parent population)

(µ+1) GA (parent population and crossover)

GIGA (crossover)

SEMO, DEMO, FEMO, . . . (multi-objective)

Randomised Local Search (RLS)

Metropolis Algorithm/Simulated Annealing (MA/SA)

Ant Colony Optimisation (ACO)

Particle Swarm Optimisation (PSO)

. . .

First of all: define the simple ones
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

(1+1) EA

1 Choose x0 ∈ {0, 1}
n uniformly at random.

2 For t := 0, . . . ,∞
1 Create y by flipping each bit of xt indep. with probab. 1/n.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt .
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

RLS

1 Choose x0 ∈ {0, 1}
n uniformly at random.

2 For t := 0, . . . ,∞
1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt .
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

MA

1 Choose x0 ∈ {0, 1}
n uniformly at random.

2 For t := 0, . . . ,∞
1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e(f (xt )−f (y))/T anyway
and xt+1 := xt otherwise.

T is fixed over all iterations.
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

SA

1 Choose x0 ∈ {0, 1}
n uniformly at random.

2 For t := 0, . . . ,∞
1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e(f (xt )−f (y))/Tt anyway
and xt+1 := xt otherwise.

Tt is dependent on t, typically decreasing
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What Kind of Theory Are We Interested in?

Not interesting here: convergence (often trivial), local
progress, models of EAs (e. g., infinite populations), . . .

Treat RSHs as randomised algorithm!

Analyse their “runtime” (computational complexity)
on selected problems
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What Kind of Theory Are We Interested in?

Not interesting here: convergence (often trivial), local
progress, models of EAs (e. g., infinite populations), . . .

Treat RSHs as randomised algorithm!

Analyse their “runtime” (computational complexity)
on selected problems

Definition

Let RSH A optimise f . Each f -evaluation is counted as a time
step. The runtime TA,f of A is the random first point of time such
that A has sampled an optimal search point.

Often considered: expected runtime, distribution of TA,f

Asymptotical results w. r. t. n
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How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:
Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s
equation), martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortised analysis

. . .
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How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:
Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s
equation), martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortised analysis

. . .

Adapt tools from the analysis of randomised algorithms;
understanding the stochastic process is often the hardest task.
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Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

These were high-quality results, however, limited to SA/MA
(nothing about EAs) and hard to generalise.
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Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

These were high-quality results, however, limited to SA/MA
(nothing about EAs) and hard to generalise.

Since the early 1990s

Systematic approach for the analysis of RSHs,
building up a completely new research area
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + · · ·+ xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods
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How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + · · ·+ xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods

Artificially designed functions

with sometimes really horrible definitions

but for the first time these allow rigorous statements

Goal: prove benefits and harm of RSH components,
e. g., crossover, mutation strength, population size . . .
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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Example: OneMax

Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (µ+1) EA,
(1+λ) EA on OneMax is Ω(n log n).

Proof by modifications of Coupon Collector’s Theorem.
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Example: OneMax

Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (µ+1) EA,
(1+λ) EA on OneMax is Ω(n log n).

Proof by modifications of Coupon Collector’s Theorem.

Theorem (e. g., Mühlenbein, 1992)

The expected runtime of RLS and the (1+1) EA on OneMax is
O(n log n).

Holds also for population-based (µ+1) EA and
for (1+λ) EA with small populations.
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Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n | OneMax(x) = i}
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Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n | OneMax(x) = i}

(1+1) EA never decreases its current fitness level.
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Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n | OneMax(x) = i}

(1+1) EA never decreases its current fitness level.

From i to some higher-level set with prob. at least

(
n − i

1

)

︸ ︷︷ ︸

choose a 0-bit

·

(
1

n

)

︸ ︷︷ ︸

flip this bit

·

(

1−
1

n

)n−1

︸ ︷︷ ︸

keep the other bits

≥
n − i

en

Expected time to reach a higher-level set is at most en
n−i

.

Expected runtime is at most

n−1∑

i=0

en

n − i
= O(n log n). �
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Later Results Using Toy Problems

Find the theoretically optimal mutation strength
(1/n for OneMax!).

optimal population size (often 1!)

crossover vs. no crossover → Real Royal Road Functions

multistarts vs. populations

frequent restarts vs. long runs

dynamic schedules

. . .
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Later Results Using Toy Problems

Find the theoretically optimal mutation strength
(1/n for OneMax!).

optimal population size (often 1!)

crossover vs. no crossover → Real Royal Road Functions

multistarts vs. populations

frequent restarts vs. long runs

dynamic schedules

. . .

Further reading: Droste/Jansen/Wegener (2002), He/Yao (2002, 2003),

Jansen (2002), Jansen/De Jong/Wegener (2005), Jansen/Wegener

(2001, 2005), Storch/Wegener (2004), Witt (2006)
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RSHs for Combinatorial Optimisation

Analysis of runtime and approximation quality on well-known
combinatorial optimisation problems, e. g.,

sorting problems (is this an optimisation problem?),
shortest path problems,
subsequence problems,
vertex cover,
Eulerian cycles,
minimum spanning trees,
maximum matchings,
partition problem,
set cover problem,
. . .
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Analysis of runtime and approximation quality on well-known
combinatorial optimisation problems, e. g.,

sorting problems (is this an optimisation problem?),
shortest path problems,
subsequence problems,
vertex cover,
Eulerian cycles,
minimum spanning trees,
maximum matchings,
partition problem,
set cover problem,
. . .

What we do not hope: to be better than the best
problem-specific algorithms
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RSHs for Combinatorial Optimisation

Analysis of runtime and approximation quality on well-known
combinatorial optimisation problems, e. g.,

sorting problems (is this an optimisation problem?),
shortest path problems,
subsequence problems,
vertex cover,
Eulerian cycles,
minimum spanning trees,
maximum matchings,
partition problem,
set cover problem,
. . .

What we do not hope: to be better than the best
problem-specific algorithms

In the following no fine-tuning of the results
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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Eulerian Cycle Problem

Given: Undirected connected Eulerian (degree of each vertex is
even) graph G = (V ,E ) with n vertices and m edges

Find: A Cycle (permutation of the edges) such that each edge is
used exactly once.
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Eulerian Cycle Problem

Given: Undirected connected Eulerian (degree of each vertex is
even) graph G = (V ,E ) with n vertices and m edges

Find: A Cycle (permutation of the edges) such that each edge is
used exactly once.

Eulerian Cycle (Hierholzer)

1 Find a cycle C in G

2 Delete the edges of C from G

3 If G is not empty go to step 1.

4 Construct the Eulerian cycle from the cycles produced in
Step 1.
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Fitness Function

Representation: permutation of edges

Fitness function

Consider the edges of the permutation after another and build up a
path p of length l .

path(π) := length of the path p implied by π

Example: π = ({2, 3}, {1, 2}, {1, 5}, {3, 4}, {4, 5}) =⇒ |p| = 3

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation
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The Algorithms

(1+1) EA

1 Choose π ∈ Sm uniform at random.

2 Choose s according to a Poisson distribution with parameter
λ = 1. Perform sequentially s + 1 jump operations to produce
π′ from π.

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation
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The Algorithms

(1+1) EA

1 Choose π ∈ Sm uniform at random.

2 Choose s according to a Poisson distribution with parameter
λ = 1. Perform sequentially s + 1 jump operations to produce
π′ from π.
Example: jump(2,4) applied to
({2,3},{1,2},{3,4},{1,5},{4,5}) produces
({2,3},{3,4},{1,5},{1,2},{4,5})
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The Algorithms

(1+1) EA

1 Choose π ∈ Sm uniform at random.

2 Choose s according to a Poisson distribution with parameter
λ = 1. Perform sequentially s + 1 jump operations to produce
π′ from π.
Example: jump(2,4) applied to
({2,3},{1,2},{3,4},{1,5},{4,5}) produces
({2,3},{3,4},{1,5},{1,2},{4,5})

3 Replace π by π′ if path(π′) ≥ path(π).

4 Repeat Steps 2 and 3 forever.
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Upper Bound, (1+1) EA

Theorem (Neumann, 2007)

The expected time until (1+1) EA working on the fitness function
path constructs an Eulerian cycle is bounded by O(m5).

Proof outline:

p is not a cycle:
1 improving jump =⇒ expected time for an improvement is
O(m2)

p is a cycle:
Show: Expected time for an improvement is bounded by
O(m4)

O(m) improvements =⇒ theorem

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation
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Cycle

jump(1, l)

jump(l , 1)

prob 1/2

C C ′

Typical run:

k-step (accepted mutation with k-jumps that change p)

Only 1-steps: O(m4) steps for an improvement

No k-step, k ≥ 4, in O(m4) steps with prob. 1− o(1)

O(1) 2- or 3-steps in O(m4) steps with prob. 1− o(1)
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1-Steps

C C ′

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation
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1-Steps

C C ′

time O(m2) to move black vertex

black performs random walk

length of cycle is at most m.

fair random walk =⇒ O(m2) movements are enough to reach
red vertex

expected time for an improvement O(m4)

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation
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Further Results

lower bound Ω(m4)
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Further Results

lower bound Ω(m4)

restricted jumps (always jump to position 1)

no random walk, but directed walk
upper bound O(m3) (Doerr/Hebbinghaus/Neumann, 2007)
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Further Results

lower bound Ω(m4)

restricted jumps (always jump to position 1)

no random walk, but directed walk
upper bound O(m3) (Doerr/Hebbinghaus/Neumann, 2007)

use of more sophisticated representations and mutation
operators:

O(m2 log m) (Doerr/Klein/Storch, 2007)
O(m log m) (Doerr/Johannsen, 2007)
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E ) with n vertices
and m edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



25/63

Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E ) with n vertices
and m edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Fitness function

Decrease number of connected components, find minimum
spanning tree:

f (s) := (c(s),w(s)).

Minimization of f with respect to the lexicographic order.
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Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E ) with n vertices
and m edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Fitness function

Decrease number of connected components, find minimum
spanning tree:

f (s) := (c(s),w(s)).

Minimization of f with respect to the lexicographic order.

Connected graph

Connected graph in expected time O(m log n) (fitness level
arguments)
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Bijection (Mayr/Plaxton, 1992)

e1

α(e3)

e3
e2

α(e1) α(e2)
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Bijection (Mayr/Plaxton, 1992)

e1

α(e3)

e3
e2

α(e1) α(e2)

k := |E (T ∗) \ E (T )|

Bijection α : E (T ∗) \ E (T )→ E (T ) \ E (T ∗)

α(ei ) on the cycle of E (T ) ∪ {ei}

w(ei ) ≤ w(α(ei ))

=⇒ k accepted 2-bit flips that turn T into T ∗

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation
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Upper Bound

Theorem (Neumann/Wegener, 2007)

The expected time until (1+1) EA constructs a minimum spanning
tree is bounded by O(m2(log n + log wmax)).

Sketch of proof:

w(s) weight current solution s

wopt weight minimum spanning tree T ∗
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Upper Bound

Theorem (Neumann/Wegener, 2007)

The expected time until (1+1) EA constructs a minimum spanning
tree is bounded by O(m2(log n + log wmax)).

Sketch of proof:

w(s) weight current solution s

wopt weight minimum spanning tree T ∗

set of m + 1 operations to reach T ∗

m′ = m − (n − 1) 1-bit flips concerning non-T ∗ edges
=⇒ spanning tree T
k 2-bit flips defined by bijection
n − k non accepted 2-bit flips

=⇒ average weight decrease (w(s) − wopt)/(m + 1)
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Upper Bound

1-step (larger total weight decrease of 1-bit flips)

2-step (larger total weight decrease of 2-bit flips)
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Upper Bound

1-step (larger total weight decrease of 1-bit flips)

2-step (larger total weight decrease of 2-bit flips)

Consider 2-steps:

Expected weight decrease by a factor 1− (1/(2n))

Probability Θ(n/m2) for a good 2-bit flip

Expected time until r 2-steps O(rm2/n)
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Upper Bound

1-step (larger total weight decrease of 1-bit flips)

2-step (larger total weight decrease of 2-bit flips)

Consider 2-steps:

Expected weight decrease by a factor 1− (1/(2n))

Probability Θ(n/m2) for a good 2-bit flip

Expected time until r 2-steps O(rm2/n)

Consider 1-steps:

Expected weight decrease by a factor 1− (1/(2m′))

Probability Θ(m′/m) for a good 1-bit flip

Expected time until r 1-steps O(rm/m′)
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Upper Bound

1-step (larger total weight decrease of 1-bit flips)

2-step (larger total weight decrease of 2-bit flips)

Consider 2-steps:

Expected weight decrease by a factor 1− (1/(2n))

Probability Θ(n/m2) for a good 2-bit flip

Expected time until r 2-steps O(rm2/n)

Consider 1-steps:

Expected weight decrease by a factor 1− (1/(2m′))

Probability Θ(m′/m) for a good 1-bit flip

Expected time until r 1-steps O(rm/m′)

1-steps faster =⇒ show bound for 2-steps.
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Expected Number of 2-Steps

wopt

(1− 1
2n

)(w(s) − wopt)

w(s) ≤ D := m · wmax
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Expected Number of 2-Steps

wopt

(1− 1
2n

)(w(s) − wopt)

w(s) ≤ D := m · wmax

(1− 1
2n

)N(w(s)− wopt)
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Expected Number of 2-Steps

wopt

(1− 1
2n

)(w(s) − wopt)

w(s) ≤ D := m · wmax

(1− 1
2n

)N(w(s)− wopt)

=⇒ (1− 1
2n

)N(w(s) − wopt) ≤ 1/2

N := ⌈2 · (ln 2) · n · (log D + 1)⌉
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Expected Number of 2-Steps

wopt

(1− 1
2n

)(w(s) − wopt)

w(s) ≤ D := m · wmax

(1− 1
2n

)N(w(s)− wopt)

=⇒ (1− 1
2n

)N(w(s) − wopt) ≤ 1/2

N := ⌈2 · (ln 2) · n · (log D + 1)⌉

Expected number of 2-steps 2N = O(n(log n + log wmax))
(Markov)

Expected time O(Nm2/n) = O(m2(log n + log wmax)).
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Further Results

Lower Bound Ω(n4 log n)

2n22n2

3n2

2n2

3n2

2n2

3n2

2n22n2

Kn/2
weights 1
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Further Results

Lower Bound Ω(n4 log n)

2n22n2

3n2

2n2

3n2

2n2

3n2

2n22n2

Kn/2
weights 1

Related Results

Experimental investigations (Briest et al., 2004)

Biased mutation operators (Raidl/Koller/Julstrom, 2006)

O(mn2) for a multi-objective approach (Neumann/Wegener,
2006)

Approximations for multi-objective minimum spanning trees
(Neumann, 2007)

SA/MA/ACO and minimum spanning trees (Later!)

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



33/63

This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths

n + 1 nodes, n edges: bit string from {0, 1}n selects edges

Fitness function: size of matching/negative for non-matchings
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths

n + 1 nodes, n edges: bit string from {0, 1}n selects edges

Fitness function: size of matching/negative for non-matchings

Theorem (Giel/Wegener, 2003)

The expected time until the (1+1) EA finds a maximum matching
on a path of n edges is O(n4).
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n2).
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Shorten augmenting path

Then flip the free edge!
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n2).

Shorten augmenting path

Then flip the free edge!

(1+1) EA follows the concept of an augmenting path!

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



35/63

(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n2).

Shorten augmenting path

Then flip the free edge!

(1+1) EA follows the concept of an augmenting path!

Length changes according to a fair random walk (Gambler’s
Ruin Problem)
→ Expected runtime O(n2) · O(n2) = O(n4).
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

ℓ = 2ℓ′ + 1
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

ℓ

Augmenting path
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

ℓ

Augmenting path can get shorter
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

ℓ

Augmenting path can get shorter but is more likely to get longer.

Theorem

For h ≥ 3, the (1+1) EA has exponential expected runtime 2Ω(ℓ)

on Gh,ℓ.

Proof by drift analysis
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(1+1) EA for the Maximum Matching Problem
(1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For ε > 0, the (1+1) EA finds a (1 + ε)-approximation of a
maximum matching in expected time O(m2⌈1/ε⌉) and is a
polynomial-time randomised approximation scheme (PRAS).
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(1+1) EA for the Maximum Matching Problem
(1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For ε > 0, the (1+1) EA finds a (1 + ε)-approximation of a
maximum matching in expected time O(m2⌈1/ε⌉) and is a
polynomial-time randomised approximation scheme (PRAS).

Proof idea:

Look into the analysis of the Hopcroft/Karp algorithm.

Current solution worse than (1 + ε)-approximate → many
augmenting paths, in partic. a short one of length ≤ 2⌈ε−1⌉

Wait for the (1+1) EA to optimise this short path.
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A More General View

Minimum spanning trees and bipartite matching are special cases
of matroid optimisation problems.
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A More General View

Minimum spanning trees and bipartite matching are special cases
of matroid optimisation problems.

Let E be a finite set and F ⊆ 2E . M = (E ,F) is a matroid if

(i) ∅ ∈ F ,

(ii) ∀X ⊆ Y ∈ F : X ∈ F , and

(iii) ∀X , Y ∈ F , |X | > |Y | : ∃ x ∈ X \ Y with Y ∪ {x} ∈ F .

Adding a function w : E → N yields a weighted matroid.
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A More General View

Minimum spanning trees and bipartite matching are special cases
of matroid optimisation problems.

Let E be a finite set and F ⊆ 2E . M = (E ,F) is a matroid if

(i) ∅ ∈ F ,

(ii) ∀X ⊆ Y ∈ F : X ∈ F , and

(iii) ∀X , Y ∈ F , |X | > |Y | : ∃ x ∈ X \ Y with Y ∪ {x} ∈ F .

Adding a function w : E → N yields a weighted matroid.

Exemplary Results (Reichel and Skutella, 2007)

The (1+1) EA and RLS solve the matroid optimisation problems

min. weight basis exactly in time O(|E |2(log |E |+ log wmax)).

unweighted intersection up to 1− ε in time O(|E |2⌈1/ε⌉).
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A More General View

Minimum spanning trees and bipartite matching are special cases
of matroid optimisation problems.

Let E be a finite set and F ⊆ 2E . M = (E ,F) is a matroid if

(i) ∅ ∈ F ,

(ii) ∀X ⊆ Y ∈ F : X ∈ F , and

(iii) ∀X , Y ∈ F , |X | > |Y | : ∃ x ∈ X \ Y with Y ∪ {x} ∈ F .

Adding a function w : E → N yields a weighted matroid.

Exemplary Results (Reichel and Skutella, 2007)

The (1+1) EA and RLS solve the matroid optimisation problems

min. weight basis exactly in time O(|E |2(log |E |+ log wmax)).

unweighted intersection up to 1− ε in time O(|E |2⌈1/ε⌉).

Very abstract/general, a step towards a characterisation of
polynomially solvable problems on which EAs are efficient
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality
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(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality

For w1, . . . ,wn, find I ⊆ {1, . . . , n}
minimising

max

{
∑

i∈I

wi ,
∑

i /∈I

wi

}

.
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(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality

For w1, . . . ,wn, find I ⊆ {1, . . . , n}
minimising

max

{
∑

i∈I

wi ,
∑

i /∈I

wi

}

.

This is an “easy” NP-hard problem:

not strongly NP-hard,

FPTAS exist,

...
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(1+1) EA for the Partition Problem
Worst-Case Results

Coding: bit string {0, 1}n characteristic vector of I

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA
reaches a solution with approximation ratio 4/3
in expected time O(n2).
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(1+1) EA for the Partition Problem
Worst-Case Results

Coding: bit string {0, 1}n characteristic vector of I

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA
reaches a solution with approximation ratio 4/3
in expected time O(n2).

Theorem (Witt, 2005)

There is an instance such that the (1+1) EA needs with
prob. Ω(1) at least nΩ(n) steps to find a solution with a better
ratio than 4/3 − ε.

Proof ideas: study effect of local steps and local optima
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism

Theorem (Witt, 2005)

On any instance, the (1+1) EA with prob. ≥ 2−c⌈1/ε⌉ ln(1/ε) finds a
(1 + ε)-approximation within O(n ln(1/ε)) steps.
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism

Theorem (Witt, 2005)

On any instance, the (1+1) EA with prob. ≥ 2−c⌈1/ε⌉ ln(1/ε) finds a
(1 + ε)-approximation within O(n ln(1/ε)) steps.

2O(⌈1/ε⌉ ln(1/ε)) parallel runs find a (1 + ε)-approximation
with prob. ≥ 3/4 in O(n ln(1/ε)) parallel steps.

Parallel runs form a PRAS!
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈

2
ε

⌉
and w :=

∑n
i=1 wi .

Assuming w1 ≥ · · · ≥ wn, we have wi ≤ εw
2 for i ≥ s.

︸ ︷︷ ︸

s−1 large objects

︸ ︷︷ ︸

small objects
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈

2
ε

⌉
and w :=

∑n
i=1 wi .

Assuming w1 ≥ · · · ≥ wn, we have wi ≤ εw
2 for i ≥ s.

︸ ︷︷ ︸

s−1 large objects

︸ ︷︷ ︸

small objects

Analyse probability of distributing

large objects in an optimal way,

small objects greedily ⇒ additive error ≤ εw/2,

This is the algorithmic idea by Graham (1969).
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(1+1) EA for the Partition Problem
Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1
(i. e., Prob(X ≥ t) = e−t for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:
discrepancy = absolute difference between weights of bins.

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



44/63

(1+1) EA for the Partition Problem
Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1
(i. e., Prob(X ≥ t) = e−t for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:
discrepancy = absolute difference between weights of bins.

How close to discrepancy 0 do we come?
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(1+1) EA for the Partition Problem
Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,
put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is O((log n)/n)
(Frenk/Rinnooy Kan, 1986).
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(1+1) EA for the Partition Problem
Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,
put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is O((log n)/n)
(Frenk/Rinnooy Kan, 1986).

Can RLS or the (1+1) EA
reach a discrepancy of o(1)?
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(1+1) EA for the Partition Problem
New Result

Theorem (Witt, 2005)

In both models, the (1+1) EA reaches discrepancy O((log n)/n)
after O(nc+4 log2 n) steps with probability 1− O(1/nc ).

Almost the same result as for LPT!
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(1+1) EA for the Partition Problem
New Result

Theorem (Witt, 2005)

In both models, the (1+1) EA reaches discrepancy O((log n)/n)
after O(nc+4 log2 n) steps with probability 1− O(1/nc ).

Almost the same result as for LPT!

Proof exploits order statistics:

W. h. p.
X(i) − X(i+1) = O((log n)/n)
for i = Ω(n).

}X(i) − X(i+1)
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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The Set Cover Problem

Another NP-hard problem

Given:

ground set S ,
collection C1, . . . , Cn of subsets
with positive costs c1, . . . , cn.
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The Set Cover Problem

Another NP-hard problem

Given:

ground set S ,
collection C1, . . . , Cn of subsets
with positive costs c1, . . . , cn.

Goal: find a minimum-cost selection

Ci1 , . . . , Cik such that
⋃k

j=1 Cij = S .
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The Set Cover Problem

Another NP-hard problem

Given:

ground set S ,
collection C1, . . . , Cn of subsets
with positive costs c1, . . . , cn.

Goal: find a minimum-cost selection

Ci1 , . . . , Cik such that
⋃k

j=1 Cij = S .

Traditional single-objective approach

Fitness = cost of selection of subsets, penalty for non-covers

Theorem

There is a Set Cover instance parameterised by c > 0 such that
RLS and the (1+1) EA for any c need an infinite resp. exponential
expected time to obtain a c-approximation.

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



49/63

Multi-objective Optimisation

Fitness f : {0, 1}n → R× R has two objectives:

1 minimise the cost of the selection,

2 minimise the number of uncovered elements from S .
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Multi-objective Optimisation

Fitness f : {0, 1}n → R× R has two objectives:

1 minimise the cost of the selection,

2 minimise the number of uncovered elements from S .

Simple Evolutionary Multi-objective Optimiser (SEMO)

1 Choose x ∈ {0, 1}n uniformly at random.
2 Determine f (x).
3 P ← {x}.
4 Repeat

Choose x ∈ P uniformly at random.
Create x ′ by flipping one randomly chosen bit of x .
Determine f (x ′).
If x ′ is not dominated by any other search point in P , include
x ′ into P and delete all other solutions z ∈ P with
f (x ′) 4 f (z) from P .
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Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an
(ln|S |+ 1)-approximate solution in expected time
O(n|S |2 + n|S |(log n + log cmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose sets
covering new elements at minimum average cost.
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Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an
(ln|S |+ 1)-approximate solution in expected time
O(n|S |2 + n|S |(log n + log cmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose sets
covering new elements at minimum average cost.

SEMO maintain covers with different numbers of uncovered
elements.

Potential function, value k ⇔ SEMO covers k elements
at cost ≤

∑|S|
i=|S|−k+1

OPT
i

.
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Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an
(ln|S |+ 1)-approximate solution in expected time
O(n|S |2 + n|S |(log n + log cmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose sets
covering new elements at minimum average cost.

SEMO maintain covers with different numbers of uncovered
elements.

Potential function, value k ⇔ SEMO covers k elements
at cost ≤

∑|S|
i=|S|−k+1

OPT
i

.

Potential is increased by adding a most cost-effective set.

Such step has probability Ω(1/(n|S |)), at most |S | increases

to obtain approximation by factor
∑|S|

i=1 1/i ≤ ln|S |+ 1.
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Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an
(ln|S |+ 1)-approximate solution in expected time
O(n|S |2 + n|S |(log n + log cmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose sets
covering new elements at minimum average cost.

SEMO maintain covers with different numbers of uncovered
elements.

Potential function, value k ⇔ SEMO covers k elements
at cost ≤

∑|S|
i=|S|−k+1

OPT
i

.

Potential is increased by adding a most cost-effective set.

Such step has probability Ω(1/(n|S |)), at most |S | increases

to obtain approximation by factor
∑|S|

i=1 1/i ≤ ln|S |+ 1.

It probably cannot be done better in polynomial time.
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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Simulated Annealing Beats Metropolis
in Combinatorial Optimisation

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural
example in which simulated annealing with any non-trivial cooling
schedule provably outperforms the Metropolis algorithm at a
carefully chosen fixed value” of the temperature.
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Simulated Annealing Beats Metropolis
in Combinatorial Optimisation

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural
example in which simulated annealing with any non-trivial cooling
schedule provably outperforms the Metropolis algorithm at a
carefully chosen fixed value” of the temperature.

Solution (Wegener, 2005): MSTs are such an example.

A bad instance for MA

1 1 1 1
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Simulated Annealing Beats Metropolis
in Combinatorial Optimisation
Results
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Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this
instance only with probability e−Ω(n) in polynomial time. SA with
temperature Tt := n3(1−Θ(1/n))t computes the MST in
O(n log n) steps with probability 1− O(1/poly(n)).
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Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this
instance only with probability e−Ω(n) in polynomial time. SA with
temperature Tt := n3(1−Θ(1/n))t computes the MST in
O(n log n) steps with probability 1− O(1/poly(n)).

Proof idea: need different temperatures to optimise all triangles.
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in Combinatorial Optimisation
Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy
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lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.
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Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.
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Simulated Annealing Beats Metropolis
in Combinatorial Optimisation
Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.

Light edges of heavy triangles still much heavier than heavy
edges of light triangles → at temperature T ∗ almost random
search on light triangles → many light triangles remain wrong.
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Simulated Annealing Beats Metropolis
in Combinatorial Optimisation
Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.

Light edges of heavy triangles still much heavier than heavy
edges of light triangles → at temperature T ∗ almost random
search on light triangles → many light triangles remain wrong.

SA first corrects heavy triangles at temperature T ∗.

After temperature has dropped, SA corrects light triangles,
without destroying heavy ones.
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimisation problems
(1+1) EA and Eulerian cycles
(1+1) EA and minimum spanning trees
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
Multi-objective optimisation and the set cover problem
SA beats MA in combinatorial optimisation
ACO and minimum spanning trees

3 End

4 References
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Ant Colony Optimisation — A Modern Search Heuristic
Background and Motivation

Ant colonies in nature

find shortest paths
in an unknown environment

using communication via
pheromone trails

show adaptive behaviour

food
nest
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Ant Colony Optimisation — A Modern Search Heuristic
Background and Motivation

Ant colonies in nature

find shortest paths
in an unknown environment

using communication via
pheromone trails

show adaptive behaviour

food
nest

food
nest

food
nest

Ant Colony Optimisation (ACO) is yet another
biologically inspired search heuristic.

Applications: combinatorial optimisation problems, e. g., TSP

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



57/63

Broder’s Algorithm

Problem: Minimum Spanning Trees
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Consider the input graph itself as construction graph.

Spanning tree can be chosen uniformly at random using
random walk algorithms (e. g. Broder, 1989).

Reward chosen edges ⇒ next solution
will be similar to constructed one
But: local improvements are possible
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Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m}
(start vertex 0) and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.
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Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m}
(start vertex 0) and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0

For a given path v1, . . . , vk select the
next edge from its neighborhood
N(v1, . . . , vk) :=
(E \ {v1, . . . , vk}) \ {e ∈ E |
(V , {v1, . . . , vk , e}) contains a cycle}

(problem-specific aspect of ACO).

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



58/63

Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m}
(start vertex 0) and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0

For a given path v1, . . . , vk select the
next edge from its neighborhood
N(v1, . . . , vk) :=
(E \ {v1, . . . , vk}) \ {e ∈ E |
(V , {v1, . . . , vk , e}) contains a cycle}

(problem-specific aspect of ACO).

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



58/63

Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m}
(start vertex 0) and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0

For a given path v1, . . . , vk select the
next edge from its neighborhood
N(v1, . . . , vk) :=
(E \ {v1, . . . , vk}) \ {e ∈ E |
(V , {v1, . . . , vk , e}) contains a cycle}

(problem-specific aspect of ACO).

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



58/63

Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m}
(start vertex 0) and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0

For a given path v1, . . . , vk select the
next edge from its neighborhood
N(v1, . . . , vk) :=
(E \ {v1, . . . , vk}) \ {e ∈ E |
(V , {v1, . . . , vk , e}) contains a cycle}

(problem-specific aspect of ACO).

Frank Neumann, Carsten Witt Computational Complexity of EC in Combinatorial Optimisation



58/63

Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m}
(start vertex 0) and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0

Reward: all edges, that point to
visited vertices
(neglect order of chosen edges)
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Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m}
(start vertex 0) and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0
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Algorithm

1-ANT:

two pheromone values

value h: if edge has been rewarded

value ℓ: otherwise

heuristic information η, η(e) = 1
w(e) (used before for TSP)
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Algorithm

1-ANT:

two pheromone values

value h: if edge has been rewarded

value ℓ: otherwise

heuristic information η, η(e) = 1
w(e) (used before for TSP)

Let vk the current vertex and Nvk
be its neighborhood.

Prob(to choose neighbor y of vk) =
[τ(vk ,y)]

α·[η(vk ,y)]
β

P

y∈N(vk )[τ(vk ,y)]α·[η(vk ,y)]β

with α, β ≥ 0.

Consider special cases where either β = 0 or α = 0.
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Results for Pheromone Updates

Case α = 1, β = 0: proportional influence of pheromone values
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Results for Pheromone Updates

Case α = 1, β = 0: proportional influence of pheromone values

Theorem (Broder-based construction graph)

Choosing h/ℓ = n3, the expected time until the 1-ANT with the
Broder-based construction graph has found an MST is
O(n6(log n + log wmax)).
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Case α = 1, β = 0: proportional influence of pheromone values

Theorem (Broder-based construction graph)

Choosing h/ℓ = n3, the expected time until the 1-ANT with the
Broder-based construction graph has found an MST is
O(n6(log n + log wmax)).

Theorem (Component-based construction graph)

Choosing h/ℓ = (m − n + 1) log n, the expected time until the
1-ANT with the component-based construction graph has found an
MST is O(mn(log n + log wmax)).
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Results for Pheromone Updates

Case α = 1, β = 0: proportional influence of pheromone values

Theorem (Broder-based construction graph)

Choosing h/ℓ = n3, the expected time until the 1-ANT with the
Broder-based construction graph has found an MST is
O(n6(log n + log wmax)).

Theorem (Component-based construction graph)

Choosing h/ℓ = (m − n + 1) log n, the expected time until the
1-ANT with the component-based construction graph has found an
MST is O(mn(log n + log wmax)).

Better than (1+1) EA!
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Broder Construction Graph: Heuristic Information

Example graph G ∗ with n = 4k + 1 vertices.

k triangles of weight profile (1, 1, 2)

two paths of length k with exponentially increasing weights.
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Theorem (Broder-based construction graph)

Let α = 0 and β be arbitrary, then the probability that the 1-ANT
using the Broder construction procedure does not find an MST in
polynomial time with probability 1− 2−Ω(n).
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Component-based Construction Graph/Heuristic
Information

Theorem (Component-based construction graph)

Choosing α = 0 and β ≥ 6wmax log n, the expected time of the
1-ANT with the component-based construction graph to find an
MST is constant.
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Component-based Construction Graph/Heuristic
Information

Theorem (Component-based construction graph)

Choosing α = 0 and β ≥ 6wmax log n, the expected time of the
1-ANT with the component-based construction graph to find an
MST is constant.

Proof Idea

Choose edges as Kruskal’s algorithm.

Calculation shows: probability of choosing a lightest edge is at
least (1− 1/n).

n − 1 steps =⇒ probability for an MST is Ω(1).
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Summary and Conclusions

Analysis of RSHs in combinatorial optimisation

Starting from toy problems to real problems

Surprising results

Interesting techniques

Can analyse even new approaches
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Summary and Conclusions

Analysis of RSHs in combinatorial optimisation

Starting from toy problems to real problems

Surprising results

Interesting techniques

Can analyse even new approaches

→ The analysis of RSHs is an exciting research direction.

Thank you!
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